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• Construction of distributions and orthogonal polynomials via Pearson’s equation.
• Modeling returns and claims by means of polynomially extended distributions.
• Calculation of option prices, stop-loss premiums and probabilities of ruin.
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a b s t r a c t

The paper deals with orthogonal polynomials as a useful technique which can be attracted to actuarial
and financial modeling. We use Pearson’s differential equation as a way for orthogonal polynomials
construction and solution. The generalized Rodrigues formula is used for this goal. Deriving the weight
function of the differential equation, we use it as a basic distribution density of variables like financial
asset returns or insurance claim sizes. In this general setting, we derive explicit formulas for option prices
as well as for insurance premiums. The numerical analysis shows that our new models provide a better
fit than some previous actuarial and financial models.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Probabilistic models are widely used in mathematical finance
and actuarial sciences. For the reason of simplicity, the most
popularmodels in these areas usually startwithmany assumptions
and restrictions, which lead to an ideal situation and end up with
some fixed distribution for estimated financial and actuarial assets.
The Black–Scholes model has become themost well-knownmodel
in the analysis of financial asset pricing, with the benefit of its
properties in mathematical theory and simplicity in numerical
realization. But the shortcomings of the Black–Scholes model are
obvious—its assumptions on the trading market are too ideal to be
possible in the real world (see Black, 1989). Normal distribution
for the logarithmic returns of financial assets is one of the most
important implications of the Black–Scholes model, and this result
is severely doubted by other empirical and theoretical studies.
Implications of the normality of financial asset returns, that
disagree with the historical data, include the following: extreme
returns (more than 3 standard deviations from mean) are only
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assigned a tiny probability which is nearly neglectable. Financial
returns must have the same probabilities for the same level of
prosperity and recession, as a result of the symmetry of the normal
distribution. Also, financial returns must have fixed skewness and
kurtosis. Other distributions are needed for better estimating the
financial asset returns.

One suitable extension of the Black–Scholes model is the
Gram–Charlier model. The Gram–Charlier model uses the product
of the normal density and a 4th degree polynomial as the finan-
cial return density, and thus allows arbitrary skewness and kur-
tosis (Madan and Milne, 1994). This is the first example of using
polynomial to generate normal-like distributions to model finan-
cial returns. The polynomial used in the Gram–Charlier model is
a linear combination of the Hermite polynomial series, which is
an orthogonal polynomial series based on the normal distribution
(see Fedoryuk, 2001). The Hermite polynomial series is a special
case of polynomial solutions for the so-called Pearson’s differen-
tial equation. Hence, aiming to extend this approach, we should
concentrate first on Pearson’s differential equation which gives us
a base for such research.

The general polynomial solutions for Pearson’s differential
equation are solved by the generalized Rodrigues formula (see Ra-
poso et al., 2007).Weight functions can be generated fromdifferent
differential equations, as a base of the inner product on the space
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of polynomials, and orthogonal polynomials based on this inner
product can be derived. The leading idea of our approach is to stan-
dardize the weight function and further use this function for the
basic density function construction. Using the product of this ba-
sic density function and a linear combination of the corresponding
orthogonal polynomials to fit the density function of the variables
of interest, like logarithmic financial returns or insurance portfo-
lio claims. This paper is devoted to the mathematical properties of
polynomials as the solution of Pearson’s differential equation, and
the model extensions of the above approach applied in financial
and actuarial sciences. To the best of our knowledge, such an ap-
proach is not very well developed yet in these areas.

The paper is organized as follows. Section 2 is devoted to the
discussion of Pearson’s differential equation and its polynomial so-
lutions given by the generalized Rodrigues formula. Classification
and related properties of the polynomial solutions are also dis-
cussed. Section 3 is devoted to the financial application generated
by this approach. Section 4 is devoted to the applications generated
by this approach in actuarial sciences. Section 5 is devoted to the
empirical studies of the above applications in financial and actuar-
ial sciences.

2. The polynomial solutions of Pearson’s differential equation

This section gives a review of the famous Pearson’s differential
equation and shows how to use the generalized Rodrigues
formula to solve it. The Rodrigues formula was first introduced
independently by Rodrigues, Ivory and Jacobi, to provide a
construction of the Legendre polynomials (see Askey, 2005). Later
such an equation was exploited in more general aspects. Many
properties of the polynomials can be recognized using the system
of the differential equation and the generalized Rodrigues formula.
These properties are extremely important and useful to provide
financial and actuarial model extensions.

Pearson’s differential equation is defined as follows:

s2(x)F ′′(x)+ s1(x)F ′(x)+ λF(x) = 0, (1)

where s1(x) and s2(x) are polynomials of x with at most first and
second degrees. The general solution of this differential equation
can be expressed as a generalized hypergeometric function. When
the parameters of the differential equation satisfy to a certain
condition, the solution is reduced to a polynomial. Suppose a
polynomial F(x) of degree n is a solution of Eq. (1), the following
equation is obtained by eliminating the term xn on the left hand
side of the differential equation (see Raposo et al., 2007)

λ = −ns′1(x)−
n(n − 1)s′′2(x)

2
. (2)

Furthermore, one can prove that under condition (2), there
exists a unique polynomial solution with degree n satisfying the
differential equation, if we neglect the effect of the scalar multipli-
cation. Denote this unique solution as Fn(x).

The second property of the polynomial series begins from dif-
ferentiation. Calculating themth derivative of Eq. (1)with the poly-
nomial Fn(x), we obtain the following equation:

s2(x)F (m+2)
n (x)+ (s1(x)+ ms′2(x))F

(m+1)
n (x)

+


m(m − 1)

2
s′′2(x)+ ms′1(x)+ λ


F (m)n (x) = 0.

If we denote

s1,m(x) = s1(x)+ ms′2(x), (3)

λn,m =
m(m − 1)− n(n − 1)

2
s′′2(x)+ (m − n)s′1(x), (4)

then the above differential equation becomes

s2(x)(F (m)n (x))′′ + s1,m(x)(F (m)n (x))′ + λn,mF (m)n (x) = 0. (5)

Thus, F (m)n (x), as a polynomial of degree n−m, is the solution of
a similar differential equation. Let us introduce theweight function
w(x), as a solution of the differential equation (under a proper
scale):

(s2(x)w(x))′ = s1(x)w(x). (6)

It is called as the weight function because it plays the role of a
weight function in the inner product and orthogonality between
polynomials. The solution of the above equation can be obtained
as (see Raposo et al., 2007)

w(x) = A
1

s2(x)
exp


s1(x)
s2(x)

dx

. (7)

The weight function is a non-polynomial solution of Pearson’s
differential equation connected to Pearson’s differential equation.
It is clear from the following observation. By differentiating (6), we
arrive to the next equation

s2(x)w′′(x)+ (2s′2(x)− s1(x))w′(x)+ (s′′2(x)− s′1(x))w(x) = 0.

The derivatives of the solution Fn(x) are given by the general-
ized Rodrigues formula presented in the following theorem.

Theorem 2.1. If Fn(x) is an nth-degree polynomial and the solution
of the differential equation (1), the mth derivative of Fn(x) should
follow the formula below:

F (m)n (x) = Nn,m
1

w(x)sm2 (x)
dn−m

dxn−m
(w(x)sn2(x)), (8)

where Nn,m = (−1)mNn0

m−1
k=0

λn,k,

for any n ≥ m ≥ 0,Nn,0 ∈ R. (9)

A brief proof of Theorem 2.1 is given in Raposo et al. (2007). We
give the full proof of the formulas (8)–(9) by the inductionmethod.

Proof. Let F∗
n (x) = w(x)sn2(x). By calculating the first and second

derivatives of F∗(x), we get the following formulas:

F∗
′

n (x) = w(x)sn−1
2 (x)(s1(x)+ (n − 1)s′2(x)), (10)

F∗
′′

n (x) = w(x)sn−2
2 (x)(s1(x)+ (n − 2)s′2(x))(s1(x)

+ (n − 1)s′2(x))+ w(x)sn−1
2 (x)(s′1(x)

+ (n − 1)s′′2(x)). (11)

From the above formulas, we can verify that

s2(x)F∗
′′

n (x)− (s1(x)+ (n − 2)s′2(x))F
∗
′

(x)

− (s′1(x)+ (n − 1)s′′2(x))F
∗(x) = 0. (12)

Differentiating the above formula n − m − 2 times, we have

s2(x)
dn−m

dxn−m
F∗

n (x)− (s1(x)+ ms′2(x))
dn−m−1

dxn−m−1
F∗

n (x)

+


m(m + 1)

2
−

n(n − 1)
2


s′′2(x)

+ (m − n + 1)s′1(x)


dn−m−2

dxn−m−2
F∗

n (x) = 0. (13)

To prove the theorem, we use the induction method. When
m = n, F (m)n is a constant, as the result of differentiation with a
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