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a b s t r a c t

Vernic (2006), Bolancé et al. (2008), and Eling (2012) identify the skew-normal and skew-student as
promisingmodels for describing actuarial loss data. In this paper, we change the focus from the liability to
the asset side and ask whether these distributions are also useful for analyzing the investment returns of
insurance companies. To answer this question, we fit various parametric distributions to capital market
datawhichhas beenused to describe the investment set of insurance companies. Our results show that the
skew-student is an especially promising distribution for modeling asset returns such as those of stocks,
bonds, money market instruments, and hedge funds. Combining the results of Vernic (2006), Bolancé et
al. (2008), Eling (2012), and this paper, it appears that the skew-student is a promising actuarial tool since
it describes both sides of the insurer’s balance sheet reasonably well.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

This paper analyzes whether the skew-normal and skew-
student distributions recently discussed in actuarial and finance
literature are appropriate models for describing the asset returns
of insurance companies. We employ frequently used datasets to
describe the investments of insurance companies and fit various
parametric distributions to these data. The impetus for this analysis
comes from recent empirical papers that identify the skew-normal
and the skew-student as useful models for analyzing actuarial loss
data (Vernic, 2006; Bolancé et al., 2008; Eling, 2012). The skew-
normal and the skew-student are also increasingly popular in
financial modeling (De Luca et al., 2006; Adcock, 2007, 2010, 2014;
Blasi and Scarlatti, 2012), especially since they are easy to interpret
and easy to implement. To our knowledge, no attempts have been
made in either the finance or the actuarial literature to analyze the
goodness-of-fit of skewed distributions such as the skew-normal
and skew-student distributions for capital market data. This paper
thus contributes to both the finance and the actuarial literature.

The finance literature shows that the skew-normal and skew-
student models lead to important theoretical results, especially
in the field of portfolio selection and asset pricing. For example,
Stein’s Lemma, which is fundamental in portfolio selection, has
been extended from the normal distribution to the skew-normal
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and the skew-student (see Adcock, 2007, 2010, 2014). It thus
seems possible that the skew-normal and skew-student models
might be promising tools for theoretical work in actuarial science,
e.g., regarding the individual and collective risk model or in asset
liability management.

In this paper we employ datasets previously used in actuarial
literature to describe the asset side of insurance companies (Eling
et al., 2009; Braun et al., 2013). For these capital market datasets
we then analyze the goodness-of-fit of the skewed distributions
compared to 12 benchmark distributions. Among the benchmark
models is the classical normal distribution, which is still the most
widely used approach for financial modeling, as well as several
other distributions that have been used more recently to describe
asset returns (e.g. the normal inverse Gaussian distribution).

Our results show that the skew-student distribution is an espe-
cially good alternative for modeling capital market returns, even
when compared to alternative benchmark models discussed in re-
cent literature. This finding extends the documented usefulness
of the skewed distributions for actuarial loss data (Vernic, 2006;
Bolancé et al., 2008; Eling, 2012) to the asset side. The skew-
student distribution might thus be an especially promising model
for actuarial modeling, both for the assets and the liabilities on an
insurer’s balance sheet.

The remainder of the paper is organized as follows. In Section 2,
we briefly introduce the skewed distributions and benchmark
models employed in the analysis. Section 3 presents the data.
The parameters estimation and goodness-of-fit results are given
in Section 4. In Section 5 we calculate value at risk (VaR) and tail
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value at risk (TVaR) using the estimated parameters and compare
the estimation results with the empirical values. We conclude in
Section 6.

2. Analyzed distributions

For the sake of brevity we only briefly describe the skewed
distributions as well as the benchmark distributions analyzed in
this paper. More details on skewed distributions can be found in
Eling (2012) and Genton (2004); a description of the benchmark
models is given in actuarial textbooks such as Mack (2002), Kaas
et al. (2009), or Panjer (2007).

2.1. Skew-normal

Let φ(·) be the standard normal density function, Φ(·) its dis-
tribution function, and x ∈ R. The probability density function
(pdf) of the skew-normal distribution is then given as (see Azza-
lini, 1985):

f (x) = 2φ (x) Φ (ax) . (1)

The distribution in (1) is called skew-normal distribution with
shape parameter a, i.e., X ∼ SN(0, 1, a). It reduces to the normal
distribution for a = 0; if a → ±∞, then the skew-normal becomes
the half-normal distribution. Location and scale parameters can be
included via the linear transformation Y = ξ + ωX , which follows
the skew-normal distribution Y ∼ SN(ξ , ω2, a), withω > 0 (ξ and
ω represent the location and scale parameters).

Pourahmadi (2007) presents an alternative, intuitive represen-
tation of the skew-normal that is useful for financial modeling.
Y ∼ SN(ξ , ω2, a) can be written as a weighted average of a stan-
dard normal and a half-normal variable:

Y = ξ + ωX = ξ + ω

δ |Z1| +


1 − δ2Z2


, (2)

with δ = a/
√
1 + a2 ∈ [−1, 1]. Z1 and Z2 are independent

N(0, 1) random variables. If δ = 0, then Y becomes N

ξ, ω2


.

Interpreting Eq. (2) in financial economics language, the return Y
is driven – in addition to the location parameter ξ – by a half-
Gaussian element |Z1| modulated by ωδ and a Gaussian element
Z2 modulated by ω

√
1 − δ2. The closer the value of δ to +1 (−1),

the more pronounced is the skewness to the right (left). Mean,
variance, skewness, and kurtosis of Y then highlight the influence
of the skewness parameter δ:

E (Y ) = ξ + ω

2/πδ, (3)

Var(Y ) = ω2(1 − 2δ2/π), (4)

Skewness(Y ) = (4 − π)/2(δ(2/π)1/2)3/(1 − 2δ2/π)3/2, (5)

Excess Kurtosis(Y ) = 2(π − 3)(δ(2/π)1/2)4/(1 − 2δ2/π)2. (6)

The mean is a linear increasing function in δ, whereas for the
variance there is a quadratic link. Note that the skew-normal dis-
tribution takes values of skewness from−1 to 1. Unlike the normal
distribution, it thus can be calibrated to skewed data, but the range
of potential skewness values is still relatively limited.

2.2. Skew-student

The skew-student distribution allows regulating both skewness
and kurtosis, which is particularly useful in modeling capital
market data. The skew-normal has a kurtosis only slightly higher
than the normal distribution (maximum excess kurtosis is 0.87).
An appealing alternative is a skewed version of the student t
distribution, introduced by Branco and Dey (2001) and further

developed by Azzalini and Capitanio (2003). The standardized
student t skewed distribution is defined using the transformation:

X =
Z

√
W/ν

, (7)

with W ∼ χ2(ν). The parameter ν represents the degrees of free-
dom and Z is an independent SN (0, 1, a); using N (0, 1) instead
would produce the standard t . The linear transformation Y =

ξ +ωX then has a skew-t distribution with parameters (ξ, ω, a, ν)
denoted by Y ∼ ST (ξ , ω2, a, ν). Mean and variance can be com-
puted as follows (for the more complex expressions for skewness
and kurtosis, we refer to Azzalini and Capitanio, 2003):

E (Y ) = ξ + ωηδ, (8)

Var(Y ) = ω2


ν

ν − 2
− ηδ2


, (9)

where η =


ν
π

Γ


1
2 (ν−1)


Γ


1
2 ν

 . Eqs. (8) and (9) again highlight the in-

fluence of δ on the mean and variance of the skew-student distri-
bution. The mean is a linear increasing function in δ, whereas the
variance is a quadratic function on δ. Compared to the skew-
normal distribution, the skew-student can take more extreme val-
ues for both skewness and kurtosis.

2.3. Benchmark models

The choice of benchmark models is based on their use in finan-
cial modeling. Asmentioned, themost widely used distribution for
modeling capital market data is the normal distribution, which is
why it is used here as one of the benchmark models. Many papers,
however, highlight the limitations of the normal distribution in de-
scribing capital market data and propose alternative distributions.
Among the most popular of these are the normal inverse Gaus-
sian (NIG) and other hyperbolic distributions (see, e.g., Kon, 1984;
Barndorff-Nielsen, 1997; Kassberger and Kiesel, 2006).

All our benchmark models are implemented in the R pack-
ages ghyp and MASS. The skew-normal and skew-student are im-
plemented in the R package sn. The R package ghyp contains a
number of distributions popular in both finance and actuarialmod-
eling: the normal, the student t (see Kole et al., 2007), the normal
inverse Gaussian (NIG) (Barndorff-Nielsen, 1997), and the hyper-
bolic (Eberlein et al., 1998). In contrast to the normal distribution,
some of the benchmark distributions are able to account for skew-
ness, kurtosis, or even both (e.g., NIG, hyperbolic). Some of these
distributions are related to each other, e.g., the student t , the nor-
mal inverse Gaussian, and the hyperbolic all belong to the class of
generalized hyperbolic distributions. The R packageMASS contains
various other distributions that can be considered in a goodness-
of-fit context, from which we use the Cauchy and logistic.

In the empirical part of the paper we derive maximum likeli-
hood estimators of the best-fitting parameters and compare the
benchmark distributions with the skew-normal and skew-student
via the Akaike information criterion (AIC) and Kolmogorov–
Smirnov goodness-of-fit tests. While the AIC might provide some
basis for comparing models, it could be that none of the models
are very good at describing the data. To check this, we use the Kol-
mogorov–Smirnov goodness-of-fit test, which analyzes whether
the theoretical distributions fit the empirical data. The results of
the Kolmogorov–Smirnov test can also be used to compare the
skew-normal and skew-studentmodels with the benchmarkmod-
els.

Note also that a better AIC value does not necessarily mean that
a model is better since there are many other aspects that actuaries
need to keep in mind, such as, e.g., the risk of change of the
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