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a b s t r a c t

In portfolios of life annuity contracts, the payments made by an annuity provider (an insurance company
or a pension fund) are driven by the random number of survivors. This paper aims to provide accurate
approximations for the present value of the payments made by the annuity provider. These approxima-
tions account not only for systematic longevity risk but also for the diversifiable fluctuations around the
unknown life table. They provide the practitioner with a useful tool avoiding the problem of simulations
within simulations in, for instance, Solvency 2 calculations, valid whatever the size of the portfolio.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction and motivation

In this paper, we consider the present value of life annuity pay-
ments accounting for the stochastic nature of decrements. Pre-
cisely, the systematic longevity risk coming from the unknown
underlying life table as well as the theoretically diversifiable risk
of random fluctuations around this life table are both taken into
account. Thus, the size of the portfolio enters the calculations and
this dimension is very important for small to medium-sized port-
folios (see, e.g., Donnelly, 2011).

In the literature, the case of life annuity policies has been
treated quite extensively but only in the limiting case, for homoge-
neous portfolios comprising infinitely many (conditionally) inde-
pendent contracts. The applicability of these limiting results may
be questioned in insurance practice as life annuity portfolios do
not always contain enough policies to reach full diversification.
For these reasons, Hoedemakers et al. (2005) proposed to approxi-
mate the distribution of the number of survivors using the Normal
Power formula. In this paper, we pursue this idea and we allow for
unknown future mortality improvements, the death probabilities
prevailing in the future being difficult to assess.
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After Lee and Carter (1992), we assume that the death rate at
age x in calendar year t is of the form exp(αx + βxκt). Here, the
time index κt reflects the general level of mortality and the age-
specific component βx represents how rapidly or slowly mortality
at each age varies when the general level of mortality changes. The
dynamics of the time index is usually described by ARIMA mod-
els. Conditional survival probabilities, given the time index future
trajectory, are complicated functions of the κts. As there is no an-
alytical expression available for their distribution function, Denuit
and Dhaene (2007) used comonotonicity to approximate the dis-
tribution of the sums of strongly correlated LogNormal random
variables playing a central role in the Lee–Carter framework. Ex-
panding on this approach, Denuit (2008) derived analytic approx-
imations for the quantiles of the life annuity conditional expected
present value given the κts. This is made by supplementing the
comonotonic approximations for the conditional survival proba-
bilities worked out in Denuit and Dhaene (2007) with a second
approximation of the same type for the life annuity conditional
expected present value, given the κts. Denuit et al. (2010) further
studied the quality of these approximations, allowing for gen-
eral ARIMA models instead of the simple random walk with drift
adopted in the majority of papers using Lee–Carter methodology.

In this paper, our aim is to develop accurate approximations for
the present value of the paymentsmade in favor of a group of n an-
nuitants. The size n of the group explicitly enters the computations
so that our results apply also to small portfolios. Deriving the exact
distribution for the present value of life annuity payments requires
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extensive simulations or numerical evaluations. The approxima-
tions derived in this paper after Denuit and Dhaene (2007) and De-
nuit (2008) avoid the requirement to conduct simulations within
simulations in, for instance, Solvency 2 reserving calculations. Nu-
merical illustrations show that the comonotonic approximations
perform well, which suggests that they can be used in practice
to evaluate the consequences of the uncertainty in future death
rates.

To derive an effective comonotonic approximation, it is essen-
tial to identify in the problem under consideration random vari-
ables that are as much positively correlated as possible. Partial
sums are often good candidates in that respect, as demonstrated
in Denuit and Dhaene (2007). For portfolios of life annuities, the
numbers of survivors up to times 1, 2, 3, . . . form a strongly pos-
itively dependent sequence for which the comonotonic approxi-
mation is expected to work well. This is precisely the intuitive idea
exploited in the present paper, which turns out to provide accurate
approximations. Notice that making the lifetimes comonotonic in
a homogeneous portfolio means that all policyholders die at the
same time, which is very crude. Hence, it is important to select ap-
propriately the random variables which will be replaced by their
comonotonic versions.

The paper is organized as follows. In Section 2, we briefly re-
call the comonotonic approximations for the conditional survival
probabilities derived by Denuit and Dhaene (2007) and for the
conditional expectation of annuity payments present value de-
rived by Denuit (2008). We supplement previous results with in-
creasing directionally convex stochastic inequalities between the
Lee–Carter conditional survival probabilities and their approxima-
tions. Section 3 proposes new approximations for the consecutive
numbers of survivors. It is established there that the approximate
numbers of survivors dominate the Lee–Carter ones in the increas-
ing directionally convex order, which allows us to derive stop-loss
order stochastic inequalities for the present value of life annuity
payments. Numerical illustrations are discussed in Section 4. Sec-
tion 5 briefly concludes.

2. Comonotonic approximations

2.1. Conditional survival probabilities

In this paper, we assume that the force of mortality at age x and
time t , denoted as µx(t), is constant within bands of age and time
in the Lexis diagram, but allowed to vary from one band to the
next. Specifically, given any integer age x and calendar year t , it
is supposed that

µx+ξ (t + τ) = µx(t) for 0 ≤ ξ, τ < 1. (2.1)

Furthermore, the force of mortality is of the form

lnµx(t) = αx + βxκt . (2.2)

Henceforth, we assume that the values κ1, . . . , κt0−1 are known
but that κt0 , κt0+1, . . . are unknown and have to be projected
from some appropriate time series model. The future trajectory
κt0 , κt0+1, . . . is henceforth denoted as κ. Therefore, the force of
mortalityµx(t) given in (2.2) is not constant but develops over time
following a stochastic process. Also, we assume that βx ≥ 0 for
every age x so that κt has an unambiguous effect on mortality. The
positivity of the βxs is supported by empirical evidence.

Consider an individual aged x0 in calendar year t0, with remain-
ing lifetime T subject to (2.1)–(2.2). Define δj = exp(αx0+j) > 0,
Zj = βx0+jκt0+j and

Sd =

d−1
j=0

exp

αx0+j + βx0+jκt0+j


=

d−1
j=0

δj exp(Zj).

In the applications, the time index is generally modeled by means
of ARIMA time series models. Hence, we assume that κ is multi-
variate Normal so that we have Zj ∼ N or(µj, σ

2
j ). Then, the con-

ditional survival probability over the next d years, given the future
trajectory κ of the time index is given by

Pr[T > d|κ] = exp(−Sd) = dPx0(t0), d = 1, 2, . . . .

Denuit and Dhaene (2007) proposed comonotonic approxima-
tions for the conditional survival probabilities dPx0(t0). Specifically,
these conditional probabilities are expected to be closely depen-
dent for increasing values of d since they can be viewed as the ex-
ponential of the sum of death rates from age x0 to age x0 + d − 1.
So, it may be reasonable to approximate the random vector of con-
ditional survival probabilities with its comonotonic version.

Recall that a random vector (X1, . . . , Xd) is said to be com-
onotonic if, and only if, there exist a random variable Z and
non-decreasing functions g1, . . . , gd, such that (X1, . . . , Xd) is
distributed as


g1(Z), . . . , gd(Z)


. Equivalently, (X1, . . . , Xd) is

comonotonic if it is distributed as

g1(Z), . . . , gd(Z)


with g1,

. . . , gd non-increasing. In particular, we may choose Z to be uni-
formly distributed over the unit interval [0, 1] and gi to be the
quantile function of Xi, i.e. the left-continuous inverse of the dis-
tribution function of Xi. A detailed account of comonotonicity can
be found in Dhaene et al. (2002a,b) and Denuit et al. (2005).

In order to determine whether the approximations derived in
this paper are conservative, we can use the following stochastic
order relations. For more details, the readers are referred, e.g., to
Denuit et al. (2005). Considering two random variables X and Y ,
X is said to be smaller than Y in the increasing convex order, or
stop-loss order, henceforth denoted as X ≼icx Y , if the inequality
E[g(X)] ≤ E[g(Y )] holds true for all the non-decreasing and con-
vex functions g for which the expectations exist. A usual strength-
ening of the stop-loss order is obtained by requiring in addition
that the means of the random variables to be compared are equal.
More precisely, X is said to be smaller than Y in the convex or-
der, henceforth denoted by X ≼cx Y , if E[X] = E[Y ] and X ≼icx Y
simultaneously hold. The term ‘‘convex’’ is used since X ≼cx Y ⇔

E[g(X)] ≤ E[g(Y )] for all the convex functions g for which the
expectations exist.

Stochastic orderings ≼cx and ≼icx aim to mathematically
express the intuitive ideas of ‘‘being less variable than’’ and ‘‘being
smaller and less variable than’’ for random variables. Dealing
with random vectors, ≼cx and ≼icx may apply marginally to
each component but we also need multivariate stochastic order
relations that translate the fact that the components of one of
these vectors are ‘‘more positively dependent’’ than those of the
other random vector. The supermodular order translates this idea
inmathematical terms. Precisely, recall that a function g : Rd

→ R
is said to be supermodular if the inequality

g(x1, . . . , xi + ϵ, . . . , xj + δ, . . . , xd)
− g(x1, . . . , xi + ϵ, . . . , xj, . . . , xd)

≥ g(x1, . . . , xi, . . . , xj + δ, . . . , xd)
− g(x1, . . . , xi, . . . , xj, . . . , xd)

holds for all x ∈ Rd, 1 ≤ i < j ≤ d and all ϵ, δ > 0. If the function
is regular enough then supermodularity corresponds to ∂2

∂xi∂xj
g ≥ 0

for every i ≠ j. Now, consider two d-dimensional randomvectorsX
and Y such that E[g(X)] ≤ E[g(Y )] for all supermodular functions
g : Rd

→ R, provided the expectations exist. Then X is said to
be smaller than Y in the supermodular order, which is denoted
by X ≼sm Y . In words, X ≼sm Y means that X1, . . . , Xd are less
positively related than Y1, . . . , Yd. Notice thatX ≼sm Y ⇒ Xi and Yi
are identically distributed for each i so that X and Y have the same
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