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a b s t r a c t

In this paper, we propose an alternative approach for forecasting mortality for multiple populations
jointly. Our contribution is developed upon the generalized linear models introduced by Renshaw et al.,
(1996) and Sithole et al., (2000), in which mortality forecasts are generated within the model structure,
without the need of additional stochastic processes. To ensure that the resulting forecasts are coherent, a
modified time-transformation is developed to stipulate the expected mortality differential between two
populations to remain constant when the long-run equilibrium is attained. The model is then further
extended to incorporate a structural change, an important property that is observed in the historical
mortality data of many national populations. The proposed modeling methods are illustrated with data
from two different pairs of populations: (1) Swedish and Danish males; (2) English and Welsh males and
U.K. male insured lives.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

It is important for actuaries to make allowance for future
mortality improvements when valuing pension schemes and life
insurance products. According to the IMF (2012), if future life
expectancies are underestimated by three years, then the liabilities
of private pension plans in the United States would increase by
approximately 9%, an amount that requires a significant increase
in contribution rates to commensurate.

Over the past decades, various mortality projection models
have been proposed. Some of these models are developed along
the lines of the Lee–Carter modeling methodology (Lee and Carter,
1992), in which one or more signals are extracted from historical
data and then extrapolated into the future to obtain forecasts
through time-series processes. A prime example is the cohort-
based extension introduced by Renshaw and Haberman (2006).
Other mortality models that fit into this framework include
the models developed by Brouhns et al. (2002), Cairns et al.
(2006, 2009) and Renshaw and Haberman (2003b). There are also
projection methods that are based on generalized linear models
(GLM) (McCullagh and Nelder, 1989), exemplified by the models
considered by Hatzopoulos and Haberman (2009), Renshaw
(1991), Renshaw et al. (1996, 1997) and Sithole et al. (2000).
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The aforementioned models are originally developed for mod-
eling the mortality of one population at a time, but in several
situations, there is a need to consider multiple populations simul-
taneously. For life insurance firms doing business in different parts
of the world, it is natural for them to consider all populations rel-
evant to their portfolios jointly when they set assumptions on fu-
ture mortality improvements. For pension plans and life insurance
companies with a small portfolio size, the credibility of their mor-
tality assumptionsmay be enhanced if theymodel the populations
associated with their portfolios jointly with one or more national
populations (see Li et al., 2010). Moreover, one may wish to model
the mortality of both genders at the same time in order to enforce
greater consistency in the projected sex differentials, which are
particularly important to insurers operating in the European Union
where gender-neutral pricing is enforced.

In spite of its importance, the subject of multi-population mor-
talitymodeling did not receivemuch attention until recentlywhen
Li and Lee (2005) proposed the concept of coherence, which lays
down the foundation for the generalization of single-population
mortality models to their multi-population counterparts. Under
the hypothesis of coherence, multi-population mortality models
are constructed in such a way that at any given age, the differ-
ence between the expected mortality trajectories of two related
populations does not diverge over the long run. Mathematically
speaking, this hypothesis means that in expectation terms, the ra-
tio of mi(x, t) to mj(x, t) does not diverge as t → ∞, where i ≠ j
andmk(x, t) is the central death rate at age x in calendar year t for
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population k. The primary rationale for the coherence hypothesis
is that it is difficult, if not impossible, to justify an indefinite di-
vergence between themortality trends of two related populations.
The hypothesis is also supported by the global convergence in life
expectancies observed by demographers including White (2002)
and Wilson (2001).

Since thework of Li and Lee (2005), a number of coherentmulti-
population mortality forecasting models have been proposed. Un-
der the Lee–Carter modeling framework, Cairns et al. (2011a)
developed a two-population extension of the Lee–Carter model, in
which coherence is achieved by having the two populations be-
ing modeled to share the same age–response profile and having
the difference between the time-varying parameters (the period
effects) of the two populations to follow a first-order autoregres-
sive process that exhibits mean-reversion. Under the generalized
linear modeling framework, the consideration of multiple popula-
tions is pioneered jointly by Hatzopoulos and Haberman (2013),
who derived coherent mortality forecasts for a large group of na-
tional populations with the following procedure. First, a GLM is
fitted to the weighted average of the central death rates of the
group of populations. Next, a sparse principal component analy-
sis is applied to the ‘B matrix’ of the estimated GLM to identify
the most important main age–time effects. Then, a GLM is fit-
ted to the residuals for each population, and an ordinary princi-
pal component analysis is applied to the ‘B matrix’ of the GLM to
identify the most significant population-specific age–time effects.
Finally, mortality forecasts are obtained by extrapolating the main
and population-specific time effects through dynamic linear re-
gressions (DLRs). To guarantee coherence, the slope terms of the
DLRs for the population-specific time effects are assumed to fol-
low first order autoregressive processes. We refer interested read-
ers to Dowd et al. (2011), Hyndman et al. (2013), Jarner and Kryger
(2011), Li and Hardy (2011), Yang andWang (2013) and Zhou et al.
(2013, 2014) for details regarding how coherence is achieved in
other multi-population mortality models.

In this paper, we contribute an alternative approach for obtain-
ing coherent multi-population mortality forecasts under the gen-
eralized linear modeling framework. Specifically, we use a GLM
with the time-transformation considered by Renshaw et al. (1996)
and Sithole et al. (2000) to model the main age–time effects that
drive the mortality dynamics of all populations under consid-
eration. Additional GLMs are then used to capture the features,
including static mortality levels and age–time effects, that are spe-
cific to different populations. To ensure that the resultingmortality
forecasts are coherent, we develop a new time-transformation for
use in the population-specific GLMs. The new time-transformation
stipulates the expected mortality differential between two pop-
ulations at any given age to remain constant when the long-run
equilibrium is attained. The most striking difference between our
proposed approach and the method introduced by Hatzopoulos
and Haberman (2013) is that we treat all time effects as explicit
covariates, whereas Hatzopoulos and Haberman (2013) consid-
ered only a sub-set of time-effects – identified by (sparse) prin-
cipal component analyses – and further modeled their dynamics
over time by DLRs. Our proposed approach preserves the spirit
of Renshaw et al. (1996) and Sithole et al. (2000), who pro-
duced mortality forecasts within the GLM structure without us-
ing additional models. From a forecasting viewpoint, our modeling
approach is simpler, sparing us from the need of choosing and
estimating more models or processes. However, relative to the ap-
proach of Hatzopoulos and Haberman (2013), our proposed ap-
proach has a shortcoming of not providing the information about
the age-pattern and evolution of the historical mortality differen-
tials that is reflected in the most important age–time effects iden-
tified by the (sparse) principal component analyses.

Our proposedmodeling approach can be configured in different
ways to suit different forecasting scenarios. In situations when the

forecaster deems that all populations under consideration should
be treated equally, the GLMs can be set up in such a way that
the aggregate model structure is symmetric, without specifying
which particular population drives the mortality dynamics of all
populations. This configuration can be considered as parallel to the
augmented common factor model proposed by Li and Lee (2005).
By contrast,whenmodeling twopopulations, one ofwhich is a sub-
population of the other, the forecaster may have an a priori belief
that the larger population is the driver. In this case, theGLMs can be
set up to permit the main time trend to be dependent entirely on
the larger population. This alternative configuration may be seen
as analogous to the ‘population 1 dominant’ approach adopted by
Cairns et al. (2011a). In later parts of this paper, we illustrate the
flexibility of our modeling approach by using mortality data from
a pair of similar populations and a pair of populations in which one
is substantially larger than the other.

The problemof structural changes is another focus of this paper.
Several demographers including Kannisto et al. (1994) and Vau-
pel (1997) observed that the mortality reductions in many devel-
oped countries have significantly accelerated in the 1970s. As this
structural change in mortality reduction may have an impact on
mortality forecasts, a few researchers have developed methods
to incorporate it into mortality projection models. For instance,
Renshaw and Haberman (2003a) added a hinge in year 1975 to
their GLM that is designed to be parallel to the original Lee–Carter
model, Sweeting (2011) considered a trend-change extension of
the Cairns–Blake–Dowd (CBD) model (Cairns et al., 2006), Li et al.
(2011) used the Zivot and Andrews test to statistically confirm
the structural change in the 1970s and captured it with a broken-
trend stationary model, and van Berkum et al. (2013) introduced a
modeling strategy that permits an objective detection of structural
breaks in the time-series of mortality rates. To address the issue
of structural changes, we further extend our modeling method to
incorporate a structural breakpoint in the fitting period. This re-
search goal is accomplished by utilizing the method of Muggeo
(2003, 2008), in which the location and impact of the structural
breakpoint are estimated iteratively. So far as we aware, this paper
is the first to model structural changes in a multi-population set-
up. In addition, to our knowledge, this paper represents the first at-
tempt to include a structural breakpoint in the setting of Renshaw
et al. (1996) and Sithole et al. (2000).

The rest of this paper is organized as follows. In Section 2, we
briefly review theGLMmethodology in a single-population setting.
In Section 3, we present our first proposed model, which is config-
ured formodeling two populations of similar statuses. In Section 4,
we discuss a further extension that incorporates a structural break
point in the fitting period. In Section 5, we introduce the lastmodel
variant which is configured to suit the situation when a particular
population is believed to be driving the mortality dynamics of all
populations under consideration. In Section 6, we discuss the issue
about forecast uncertainty. Finally, Section 7 concludes the paper.

2. A review of the GLM methodology in a single-population
setting

In this section, we briefly review the Poisson GLM that Renshaw
et al. (1996) and Sithole et al. (2000) used to model and forecast
forces of mortality. Let us first define the following notation:

• A(x, t) is a random variable representing the number of deaths
at age x and in year t;

• a(x, t) is the actual number of death at age x and in year t ,
observed from the data;

• d̂(x, t) is the expected number of death at age x and in year t ,
computed from the estimated model;

• µ(x, t) is the force of mortality at age x and in year t;
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