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1. Introduction

Multivariate extreme value statistics deals with the estima-
tion of the tail of a multivariate distribution function based on
a random sample. Of particular interest is the estimation of the
extremal dependence between two or more variables. Modeling
tail dependence is a crucial issue in actuarial science (see e.g. Joe,
2011), firstly, because of the forthcoming Solvency II regulation
framework which will oblige insurers and mutuals to compute
99.5% quantiles. Secondly, tail dependence can be used in the
daily work of actuaries, for instance for pricing an excess-of-loss
reinsurance treaty (see Cebridn et al., 2003, and the references
therein), and for approximating very large quantiles of the distri-
bution of the sums of possibly dependent risks (Barbe et al., 2006).
In finance, obvious applications also arise, see e.g. Charpentier and
Juri (2006), and Poon et al. (2004). Therefore, accurate modeling of
extremal events is needed to better understand the relationship of
possibly dependent risks at the tail.

A full characterization of the extremal dependence between
variables can be obtained from functions like the spectral distri-
bution function or the Pickands dependence function. We refer to
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Beirlant et al. (2004), and de Haan and Ferreira (2006), and the
references therein, for more details about this approach. Alterna-
tively, similar to classical statistics one can try and summarize the
extremal dependency in a number of well chosen coefficients that
give a representative picture of the full dependency structure. In
this paper we will consider the estimation of such a dependency
coefficient, namely the coefficient of tail dependence.

The extremal dependence between the components of a con-
tinuous random vector (X, Y) with unit Fréchet margins (note that
this can be assumed without loss of generality) can be analyzed
with the model of Ledford and Tawn (1997):

PX >x,Y >y = x’dly’dzﬂ(x,y),

where dq, d; > 0 and /£ is a bivariate slowly varying function, i.e.
£(tx, ty)
£(t, t)

and the function ¢ is homogeneous of order zero. The parameter
n = (dy + dy)~!is called the coefficient of tail dependence. It sat-
isfies n € (0, 1], and larger values of it indicate a stronger extremal
dependence. As we can imagine, several attempts have been made
to estimate n from data. Since

P(min(X,Y) > 2) =P(X > z,Y > z) =z~ V"(z, 2),

X,y >0,

— ¢(x,y) ast — oo, forallx,y > 0,

i.e. the transformed variable min(X,Y) follows a Pareto-type
model with index 1/7, one can estimate n with classical estimators
for the extreme value index like the Hill (1975), Pickands (1975)
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or moment estimator (Dekkers et al., 1989). However, this type
of estimators typically suffers from bias and also they are not ro-
bust with respect to outliers. These issues will be addressed in the
present paper.

In order to obtain a bias-corrected estimator we will, as usual
in extreme value statistics, invoke a second order condition.
In particular we will work under the following condition from
Draisma et al. (2004), which can be seen as an extension of the
above discussed Ledford and Tawn condition.

Condition SO: Let (X, Y) be a random vector with joint distribu-
tion function F and continuous marginal distribution functions Fyx and
Fy such that

i (t)71 P(l — Fx(x) < fX, 1— Fy(Y) < ly) _ ( ))
to B PA—FRX) <t 1—F) <ty Y
=:c1(x,¥) (1

exists forallx > 0,y > O withx +y > 0, a function q, tending
tozeroast | 0, and cy a function neither constant nor a multiple of
c. Moreover, we assume that the convergence is uniform on {(x, y) €
2 2
X +y =1}
Essentially, this condition is a second order multivariate regular
variation condition on the function R(x, y) := IF’(] — X)) < x,

1—-—F((Y) < y). It can be shown that R(t, t) is regularly varying
at zero with index 1/#, |q4| is regularly varying at zero with index
T > 0, and that the function c is homogeneous of order 1/1, that
is c(tx, ty) = t/7c(x, y). Also, c; (x, x) = x'/"(x* — 1)/.

The robust and asymptotically unbiased estimator for 1 will be
derived from a second order model obtained from condition (SO),
which will be fitted to the data by the minimum density power
divergence (MDPD) criterion. The specific second order model will
be introduced in the next section. The density power divergence
criterion was originally introduced by Basu et al. (1998) for the
purpose of developing a robust estimation method. In particular,
the density power divergence between density functions f and h is

given by
/ [h”“(z) - (1 n 1) b @f @)
R o
Ag(f, h) = + éf”“(z) dz, a >0,
f@ B
/Rlog %f(z)dz, a=0

Note that for « = 0 one recovers the Kullback-Leibler divergence,
whereas setting @ = 1 leads to the L, divergence. Assume that the
density function h depends on a parameter vector 6, and let f be the
true density function of the random variable under consideration.
The idea is then to estimate # by minimizing an empirical version
of A, based on a random sample Z, ..., Z, from f: if « > 0 one
considers

A0 = | pite _ NI es
AQ(G)._/Rh (2)dz <1+a>n;h ),

whereas fora =0

~ 1<

Ao(0) = —~ > logh(z).
i=1

For o = 0, one fits the model h to the data using the maximum like-
lihood method. The parameter « controls the trade-off between
efficiency and robustness of the MDPD estimator: the estimator
becomes more efficient but less robust against outliers as « gets
closer to zero, whereas for increasing « the robustness increases
and the efficiency decreases.

In Beirlant et al. (2011), an asymptotically unbiased estimator
for n was proposed, based on fitting the extended Pareto

distribution with the method of maximum likelihood to properly
transformed random variables. Goegebeur and Guillou (2013)
obtained asymptotic unbiasedness by taking a properly weighted
sum of two biased estimators for n. However, these methods are
not robust with respect to outliers.

The plan of the paper is as follows. In Section 2, we will in-
troduce a second order Pareto-type model, which is derived from
a submodel of condition (S©O), and discuss the robust estimation
method. In Section 3, the asymptotic properties of our estimator
are established. In particular, we will establish a uniform consis-
tency result for the tail quantile process and use this to obtain the
limiting distribution of the robust estimator for 5. The estimation
method is illustrated with a small simulation study in Section 4,
and a real dataset concerning workers’ compensation in Section 5.
Section 6 contains some concluding remarks. The proofs of all re-
sults are deferred to the Appendix.

2. Model and assumptions

Let (X,Y) be a bivariate random vector with continuous
marginal distributions satisfying

P(1—F(X) <x 1—F(Y) <y) =x1y2g(x,y)
1
X <1+78(x,y)>, x>0,y>0, (2)
n

where d;, d, are positive constants, n := (d; + dy)~' € (0, 1) is
the tail dependence coefficient, g is a continuous function that is
homogeneous of order 0 and § is a function of constant sign in the
neighborhood of zero, with |§| being a bivariate regularly varying
function, that is, there exists a function & such that

|81(tx, ty)
elo |3](t, t)

for all x,y > 0. We assume additionally that & is continuous, ho-
mogeneous of order ¢ > 0, and that the convergence is uniform
on {(x,y) € [0, 00)?|x* + y?> = 1}. Note that we exclude the case
n = 1,as was also done in Beirlant and Vandewalle (2002), Beirlant
et al. (2011), and Goegebeur and Guillou (2013). For the sequel, it
is instructive to keep the following elementary property in mind.

=&(x,Y),

Lemma 1. Model (2) satisfies assumption (SO).

Many commonly used joint distribution functions satisfy model
(2). Note that this model is in fact a condition on the copula
function C. Indeed, one easily verifies that

PA—-—FKX)<x,1-F{Y)<y)=x4+y—1+C(1—-x,1—y).

Example 1. The Farlie Gumbel Morgenstern (FGM) distribution.
The Farlie Gumbel Morgenstern copula function is given by

Cx.y) =xy[1+BA -1 -p]. &y €0, 17,
with 8 € [—1, 1]. Straightforward calculations lead to
P(1—FX) <x, 1-F/(Y) <y) =xy[1+ B — B(x+y) + Bxy].

In the case where § € (—1, 1], we getthatd; =d, = 1,71 = 1/2,
gx.y) =1+ B,6(xy) = —npx+y—xy)/(1+B),Ex,y) =
(x 4+ y)/2 and T = 1. In terms of condition (SO) this gives then
cx,y) =xy,c1(x,y) =xy(x+y—2)/2and q;(t) ~ —2pt/(1+p).
Inthe case 8 = —1,we haved; =d, = 3/2,n = 1/3,g(x,y) =
X+ /Xy, 8(x,y) = —xy/Bx +y)),&(x,y) = 2xy/(x +y) and
7 = 1. Condition (SO) is also satisfied with c(x, y) = xy(x +y)/2,
c1(x,y) =xy(2xy —x —y)/2 and q1(¢) ~ —t/2.
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