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• We derive a number of analytic results for GMDB ratchet options.
• Closed form solutions are found for simple mortality laws.
• We find an infinite series solution for a general mortality laws.
• We derive the conditions under which this series terminates.
• We sum this series for at-the-money options under the realistic Makeham’s Law.
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a b s t r a c t

We derive a number of analytic results for GMDB ratchet options. Closed form solutions are found for
De Moivre’s Law, Constant Force of Mortality, Constant Force of Mortality with an endowment age and
constant force of mortality with a cutoff age. We find an infinite series solution for a general mortality
laws and we derive the conditions under which this series terminates. We sum this series for at-the-
money options under the realistic Makeham’s Law of Mortality.
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1. Introduction

Muchwork has been done on the valuation of GuaranteedMin-
imumDeath Benefits (GMDB) embedded in variable annuities con-
tracts since their introduction over 20 years ago. In a variable
annuity contract, the policyholder invests in an equity-based ac-
count and receives the account value at maturity of the contract
which he can then chose to annuitize if he desires. GMDB riders
guarantee someminimumbenefit at death,which is usually at least
the return of premiums paid. It is sometimes the case that the con-
tract guarantees that the beneficiary receives the maximum value
the contract has attained, a situation commonly called a ‘‘ratchet’’
GMDB although it is analogous to lookback options in the finan-
cial literature. Because the annuities are invested in stock funds,
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GMDB riders resemble a sequence of lookback put options, with
the put value on a given date being multiplied by the probability
the annuitant dies that date and has not yet lapsed his policy. The
formula for a floating strike lookback put was originally derived by
Gatto et al. (1979) and can be found in Haug (2007) pg. 142. One
can integrate this function with respect to a probability distribu-
tion of maturity times in order to numerically evaluate the GMDB,
see Hardy (2003). Brennan and Schwartz (1976) was the first pa-
per to price contracts involving a combination of equity guarantees
and mortality rates.

A number of papers address issues specific to GMDB pricing,
including Milevsky and Posner (2001) and Milevsky and Salisbury
(2001), which derives a differential equation that must be satisfied
by the GMDB value. A number of solutions have been found assum-
ing constant mortality and lapse for return of premium GMDBs,
both in that paper and by Ulm (2006). Ulm (2008) extends these
results to roll-up GMDBs as well as finding analytic solutions for
De Moivre’s Law of mortality. This paper also derives results for
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policies that endow at a certain age as well as those whose guaran-
tees are eliminated after a certain age. Gerber et al. (2012) derive
results for a number of basic options in addition to simple puts.
These studies all have the drawback that the mortality laws used
are not very representative of real human mortality. In this paper,
we derive some analytic results on ratchet options, including re-
sults on the more realistic Makeham Law of Mortality. This is a
valuable contribution as there is a significant need in practice for
fast and accurate methods of calculation. Milevsky (2006) pg. 259
mentions that ‘‘it is very difficult to obtain a closed-form solution’’
for GMDB options and to date not many exist.

We determine these values by solving the P.D.E. derived by
Milevsky and Salisbury (2001) using Laplace Transform tech-
niques. Transform techniques have beenused to solve similar PDEs.
Davydov and Lintesky (2001) price continuous barrier and look-
back options, Petrella and Kou (2006) price discrete barrier and
lookback options and Zhu and Lian (2011) price variance swaps us-
ing transforms.

2. The differential equation to be solved

Assume the existence of a deferred annuity with a variable ac-
count. The annuity has a GMDB rider that guarantees a return of
premium upon the death of the annuitant. This could be modeled
as the sum of a continuous sequence of European put options (see,
for example, Hardy (2003)). The weight at a given option duration
would be equal to the instantaneous probability of death at that
moment. The value of the strike at that moment would be X , the
value of the initial premium paid. The equation that must be satis-
fied by the value of the GMDB, if S ≤ Xfa(S, t), is:

∂ fa
∂t

+ [r(t)− q]S
∂ fa
∂S

+
1
2
σ 2(t)S2

∂2fa
∂S2

= [r(t)+ µx(t)+ λ(S, t)]fa − [µx(t)](X − S) (1)

which is derived in Milevsky and Salisbury (2001), or Ulm (2006).
The boundary condition for a ratchet option becomes:

∂ f
∂S


X

=
f
X
. (2)

That is, the derivative is continuous across the boundary and the
value is equal to f (X) SX when S > X . In the remainder of Section 2,
we will avoid making any assumptions on the form of µx(t). We
will, however, assume a constant lapse rate of λ(S, t) = λ as well
as a constant risk-free rate and volatility.

2.1. General solution to Eq. (1)

Following Ulm (2008), I will assume fa(S, t) is of the form:

fa(S, t) = [XA(t)− SB(t)] + C(S, t) (3)

which leads to:

A′(t)− (r + µ(t)+ λ)A(t) = −µ(t) (4)

and

B′(t)− (q + µ(t)+ λ)B(t) = −µ(t) (5)

as in Ulm. Bowers et al. (1997, page 125) state that

d
dx

Āx − (δ + µ(x))Āx = −µ(x) (6)

where δ is the force of interest. This implies that A(t) and B(t) are
Āt at force of interest r + λ and q + λ respectively.

C must now obey the following equation:

∂C
∂t

− [r + µx(t)+ λ]C + (r − q)S
∂C
∂S

+
1
2
σ 2S2

∂2C
∂S2

= 0 (7)

subject to the boundary condition:

∂C
∂S


X

=
C
X

+ A(t). (8)

We now make Eqs. (7) and (8) dimensionless. The derivation
follows similar lines to that found in Wilmott et al. (1995) and
Ulm (2008). We pick dimensionless variables y = ln

 S
X


and τ =

σ 2(T−t)
2 . T is currently an arbitrary parameter as, unlike the case

for the vanilla European options, there is no expiration date to the
GMDB option. Later, we will see that T represents the age at which
the GMDB must be exercised. For a mortality function such as De
Moivre’s law with a built in maximum age, T represents the time
remaining until that age is reached. For a mortality function with-
out a maximum age, T can be viewed as the time until the GMDB
is no longer a death benefit, but an endowment benefit. If there is
no endowment age, we will let T → ∞ as the final step. We will
assume C(S, t) = Xeαyf (τ )w(y, τ ):

We chose α to be 1
2 −

(r−q)
σ 2 and assume that f (τ ) satisfies:

f ′(τ )+


2(r + µx(τ )+ λ)

σ 2
+ α2


f (τ ) = 0 (9)

this leads to the following equation forw(y, τ ):

∂w

∂τ
−
∂2w

∂y2
= 0. (10)

Subject to the boundary condition:

∂w

∂y


0

= [1 − α]w +
A(τ )
f (τ )

(11)

and initial conditionw(y, 0) = 0.
The ordinary differential equation for f (τ ) is solved by:

f (τ ) = e−κ(τ−τ0)e−
2
σ2

 τ
τ0
µ(s)ds (12)

where κ =
2(r+λ)
σ 2 + α2, τ0 is an arbitrary constant, and µ(s) is the

functional form of µ(τ) not µ(t).
Eq. (10) and associated boundary conditions can be solved by

finding the Laplace transform relative to τ :

pg(p)−
∂2g
∂y2

= w(y, 0) = 0. (13)

With transformed boundary condition:

∂g
∂y


0

= [1 − α]g + A∗(p) (14)

A∗(p) = L

A(τ )
f (τ )


. (15)

Satisfying the boundary conditions and the requirement that
the function stay finite as y → ∞ gives:

g(y, p) =
A∗(p)

√
p + α − 1

ey
√
p. (16)

We now turn our attention to finding A∗(p) for specific mortal-
ity functions and inverting the Laplace transform.

3. Solution to Eq. (1) under specific mortality laws

3.1. The value of a Ratchet GMDB under De Moivre’s law of mortality

The general procedure for determining the value of the option
is to find A(t), B(t) and, find the function in Eq. (16) and invert the
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