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h i g h l i g h t s

• We investigate variable annuity contracts for which the fee deducted from the policyholder’s account depends on the account value.
• We consider an incomplete financial market modelled with a two-dimensional Lévy process.
• We apply a quadratic pricing and hedging objective.
• We derive an equation from which the fee for the maturity guaranteed benefit can be calculated.
• We characterize a strategy which allows the insurer to hedge the maturity guaranteed benefit.
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a b s t r a c t

We investigate the problem of pricing and hedging variable annuity contracts for which the fee deducted
from the policyholder’s account depends on the account value. It is believed that state-dependent fees are
beneficial to policyholders and insurers since they reduce policyholders’ incentives to lapse the policies
and match the costs incurred by policyholders with the pay-offs received from embedded guarantees.
We consider an incomplete financial market which consists of two risky assets modelled with a two-
dimensional Lévy process. One of the assets is a security which can be traded by the insurer, and the
second asset is a security which is the underlying fund for the variable annuity contract. In our model we
derive an equation from which the fee for the guaranteed benefit can be calculated and we characterize
a strategy which allows the insurer to hedge the benefit. To solve the pricing and hedging problem in an
incomplete financial market we apply a quadratic objective.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Variable annuities are among the most popular insurance con-
tracts sold worldwide. Their popularity is due to the fact that vari-
able annuities combine insurance with investment by providing
a protection against life contingencies and a participation in the
growth of the financial market. Variable annuities provide benefits
which are contingent on the performance of investment funds to-
getherwith capital protectionswhich guarantee aminimumrate of
return from the investment. Nowadays, we find a range of variable
annuity contracts which guarantee aminimumdeath benefit, min-
imum maturity benefit, minimum income benefit and minimum
accumulation benefit.

The problem of pricing and hedging variable annuities has been
thoroughly studied in the actuarial literature, see among others
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Bacinello et al. (2011), Bauer et al. (2008), Bernard et al. (2014),
Coleman et al. (2007), Deelstra and Rayée (2013), Hardy (2003),
Quittard-Pinon and Kelani (2013). From the financial point of view
the capital protection embedded in a variable annuity is a financial
option on an investment fund. Consequently, techniques from fi-
nancial mathematics should be applied in order to price and hedge
variable annuity benefits. However, there is a significant difference
between pricing and hedging financial options and guarantees em-
bedded in variable annuities. A financial option is financed with a
premium which is paid by the buyer of the option at the inception
of the contract, whereas a guarantee embedded in a variable an-
nuity is financed with fees which are paid by the policyholder dur-
ing the lifetime of the contract. Moreover, the fees are deducted
from the policyholder’s account and those fees should finance the
guaranteewhich is contingent on the policyholder’s account value.
Those subtle issues, typical for variable annuities, should be re-
flected in amodel which is used for pricing and hedging of variable
annuities.

In most variable annuity contracts insurers deduct fees which
are proportional to the policyholder’s account value. Consequently,
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if the account value is low the fee is low, and if the account value
is high the fee is high. It has been noticed that such a fee payment
scheme increases incentives among insured persons to lapse their
policies. Guarantees which are embedded in variable annuities are
similar to put options, which means that the guarantee is in-the-
money if the account value is low and is out-of-the money if the
account value is high. If a proportional fee is deducted from the
account, then the policyholder pays a high fee for the guarantee
in times when the guarantee is not valuable to him. Clearly, the
policyholder is not satisfied if he has to pay a lot of money for the
embedded guarantee which he does not need in times of growing
economy and, consequently, he is very likely to lapse the policy.
In order to reduce policyholders’ incentives for lapsing variable
annuities it has been suggested that state-dependent fees should
be introducedby insurers. In recent years Prudential UK introduced
a variable annuitywith a guaranteedminimumreturn underwhich
the fee is deducted from the account at a fixed rate only if the
account value is below a guaranteed level. Under such an account-
dependent payment scheme the fee for the guarantee is paid only
if the guarantee is valuable to the policyholder. The advantage
of such a fee payment scheme is that it reduces policyholders’
incentives to lapse the policies and matches the costs incurred
by policyholders with the pay-offs received from embedded
guarantees, but the disadvantage is that the insurer who collects
the fee only in times when the guarantee is in-the-moneymust set
the fee rate at a level which is higher than the constant fee rate.

A variable annuity contract with a fee which is deducted at a
fixed rate only if the account value is below a pre-specified level
has been recently studied in Bernard et al. (in press). The authors
consider a complete Black–Scholes financial model with one risky
asset and derive an equation fromwhich the fee for the embedded
guarantee can be calculated. The problem of hedging the guaran-
teed benefit is not considered in Bernard et al. (in press). In fact, the
hedging strategy in themodel fromBernard et al. (in press) is trivial
since the authors consider a complete financial market and, conse-
quently, the delta-hedging strategy (the replicating strategy) is the
only hedging strategy which can be used. To the best of our knowl-
edge the paper by Bernard et al. (in press) is the only paper in the
literature which studies variable annuities with state-dependent
fees. Our paper is the second one in this field. We would like to
point out that our financial model and our pricing and hedging
problem are more general than the model and the problem from
Bernard et al. (in press).

In this paperwe consider an incomplete financial market which
consists of two risky assets modelled with a two-dimensional Lévy
process. One of the assets is a security which can be traded by the
insurer, and the second asset is a security which is the underly-
ing fund for the variable annuity contract. Hence, in this paper we
take into account two important sources ofmarket incompleteness
which the insurer must face in reality. The first source of market
incompleteness comes from unpredictable jumps (crashes) in the
asset price which are modelled with a discontinuous Lévy process,
and the second source of market incompleteness comes from the
impossibility to trade the fund on which the variable annuity is
contingent. We would like to point out that in reality the insurer
can never trade the underlying fund (an exotic external fund) for
a variable annuity and asymmetric heavy tails of asset returns and
crashes in the market are the main financial risks for the insurer
selling a variable annuity. As far as the fee payment scheme is con-
cerned, which is the crucial point in our paper, we consider a gen-
eral state-dependent fee which is modelled as a function of the
account value. Our fee process includes the fee process consid-
ered in Bernard et al. (in press). To solve the pricing and hedging
problem in our incomplete financial model we apply a quadratic
objective and we require that the mismatch between the hedg-
ing portfolio and the liability at the terminal time is minimal in a

mean-square sense. We derive an equation from which the fee for
the guaranteed benefit can be calculated and we find the hedging
strategy which allows the insurer to hedge optimally the benefit.
We use a backward stochastic differential equation to character-
ize the fee and the hedging strategy. We point out that quadratic
pricing and hedging is very popular in financial mathematics and
we would like to mention recent papers by Ankirchner and Heine
(2012), Fujii and Takahashi (in press), Jeanblanc et al. (2012), Khar-
roubi et al. (2013), and Kohlmann et al. (2010) where backward
stochastic differential equations are used.

This paper is structured as follows. In Section 2 we describe the
model. In Section 3we solve a quadratic optimization problem and
in Section 4 the solution of the quadratic optimization problem
is used to solve the pricing and hedging problem for variable
annuities with state-dependent fees. In Section 5 we present a
numerical example which illustrates how our solution can be
applied in practice. In the numerical example the dependence
between Lévy processes is modelled with a Lévy Clayton copula.

2. The model

We deal with a probability space (Ω,F , P) with a filtration
F = (Ft)0≤t≤T and a finite time horizon T < ∞. We assume
that F satisfies the usual hypotheses of completeness (F0 con-
tains all sets of P-measure zero) and right continuity (Ft = Ft+).
On the probability space (Ω,F , P)we define an F -adapted, two-
dimensional Lévy process L = (LF , LS) = (LF (t), LS(t), 0 ≤ t ≤ T ).
Its discontinuous part is denoted by Ld = (LdF , L

d
S).

The financial market consists of a risk-free bank account R =

(R(t), 0 ≤ t ≤ T ) and two risky assets F = (F(t), 0 ≤ t ≤ T ) and
S = (S(t), 0 ≤ t ≤ T ). The value of the risk-free bank account
satisfies the dynamics

R(t) = R(0)ert , 0 ≤ t ≤ T , (2.1)

and the prices of the risky assets are modelled with dependent
exponential Lévy processes, i.e. they satisfy the dynamics

F(t) = F(0)eLF (t), S(t) = S(0)eLS (t), 0 ≤ t ≤ T .

By the Lévy–Itô decomposition, see Theorem 2.4.1 in Applebaum
(2004), we can consider the representations

F(t) = F(0)eµ
∗
F t+σF ,1W (t)+σF ,2B(t)+

 t
0

R2 zF Ñ(ds,dzF ,dzS ),

0 ≤ t ≤ T ,

S(t) = S(0)eµ
∗
S t+σS,1W (t)+σS,2B(t)+

 t
0

R2 zS Ñ(ds,dzF ,dzS ),

0 ≤ t ≤ T , (2.2)

where W = (W (t), 0 ≤ t ≤ T ) and B = (B(t), 0 ≤ t ≤ T )
are independent Brownian motions, and N is a random measure
on Ω × B([0, T ]) × B(R2) which is independent of (W , B). The
compensated randommeasure Ñ is defined by

Ñ(dt, dzF , dzS) = N(dt, dzF , dzS)− ν(dzF , dzS)dt,

where ν is a σ -finite measure on B(R2) called a Lévymeasure. We
set N([0, T ], {(0, 0)}) = ν({(0, 0)}) = 0 and we assume that

(A)


R2(e2zF + e2zS )ν(dzF , dzS) < ∞.

The randommeasure N counts the number of jumps of a given size
of the Lévy process L = (LF , LS), see Chapter 2.3 in Applebaum
(2004). We point out that we use dependent Lévy process (LF , LS)
to model the asset prices (F , S). The continuous parts of the Lévy
processes are correlated with coefficient ρ. Hence, by the Cholesky
decomposition we can choose

σS,1 = σS, σS,2 = 0,

σF ,1 = σFρ, σF ,2 = σF

1 − ρ2. (2.3)
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