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a b s t r a c t

Researchers in actuarial sciences have investigated the tail behavior of the LCR and ECOMOR reinsurance
treaties separately formanaging extreme risks in reinsurance business. In practice, a reinsurance company
may possess these two treaties simultaneously. Therefore, investigating the joint tail behavior of these
two treaties is practically useful in risk management. This paper derives the asymptotic limit of the joint
tail of these two reinsurance treaties under the setup of Jiang and Tang (2008).

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Let {Xi} be a sequence of independent and identically dis-
tributed positive claim sizes according to a counting process N(t).
Let X∗

1 ≤ · · · ≤ X∗

N(t) denote the order statistics of X1, . . . , XN(t).
In order to manage huge losses in insurance business, the LCR
and ECOMOR reinsurance treaties were introduced by Amme-
ter (1964) and Thépaut (1950), respectively, which are defined
as

Ll(t) =

l
i=1

X∗

N(t)−l+iI(N(t) ≥ l) and

El(t) =

l
i=1

(X∗

N(t)−l+i − X∗

N(t)−l+1)I(N(t) ≥ l),

(1)

where l is a positive integer.
These two popular treaties have received some studies in the

actuarial literature with focus on two quantities: the expectation
with interpretation as useful in calculating premium (see Kremer,
1985, 1998) and tail probability with interpretation as predicting
extreme events (see Ladoucette and Teugels, 2006; Jiang and
Tang, 2008; Asimit and Jones, 2008; Hashorva and Li, 2013, and
references therein).

In practice, a reinsurance companymaypossess these two types
of treaties simultaneously, and so it is important and useful to
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investigate the joint tail behavior of LCR andECOMOR formanaging
catastrophic risks. Let GL and GE denote the distribution functions
of Ll(t) and El(t), respectively, for some fixed positive integer l
and t > 0. Motivated by the multivariate extreme value theory
(see De Haan and Ferreira, 2006), the joint tail of these two treaties
is defined as the asymptotic behavior of P(GL(Ll(t)) > 1 −

sx,GE(El(t)) > 1 − sy) for some given x, y > 0 as s → 0. Study of
such a limit plays an important role in managing extreme risks for
a reinsurance company.

We organize this paper as follows. Section 2 presents the main
results for the asymptotic behavior of the above joint tail and
the tail behavior of a linear combination of these two treaties
under the same setup in Jiang and Tang (2008). Proofs are put in
Section 3.

2. Main results

Throughout we follow the setup in Jiang and Tang (2008)
by assuming that the claim sizes {Xi} are independent of the
counting process N(t) and the common distribution function F of
X ′

i s satisfies

lim
x→∞

1 − F(x + y)
1 − F(x)

= e−γ y and

lim
x→∞

P(X1 + X2 > x)
P(X1 > x)

∈ (0, ∞)

(2)

for all y ≥ 0 and some γ ≥ 0. Examples and properties of distri-
bution functions satisfying (2) can be found in Embrechts (1983),
Cline (1986) and Embrechts et al. (1997).
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Under the above setting and some other conditions, Jiang and
Tang (2008) showed that

lim
x→∞

P(Ll(t) > x)
1 − F(x)

=

∞
n=l

P(N(t) = n)
n!

(n − l + 1)!(l − 2)!

×


∞

0
eγ v


∞

v

eγ uF(du)
l−2

F n−l+1(dv)

:= cL(γ ) (3)
and

lim
x→∞

P(El(t) > x)
1 − F(x)

=

∞
n=l

P(N(t) = n)
n!

(n − l + 1)!(l − 2)!

×


∞

0
e−(l−1)γ v


∞

v

eγ uF(du)
l−2

F n−l+1(dv)

:= cE(γ ) (4)
for fixed l ≥ 2 and t > 0. Note that cL(0) = cE(0).

As argued in the introduction, a reinsurance company may
need to understand well the joint tail behavior of Ll(t) and El(t)
for managing its catastrophic risks. Like the study of multivariate
extremes, we define the joint tail as
H(x, y) = lim

s→0
s−1P(GL(Ll(t)) > 1 − sx,GE(El(t)) > 1 − sy)

for x, y > 0,
where GL and GE denote the distribution functions of Ll(t) and
El(t), respectively. When H(x, y) ≡ 0, the two variables are called
asymptotic independence. Otherwise they are called asymptotic
dependence. When the variables are asymptotically independent,
the standard bivariate extreme value theory cannot be employed
to predict some type of rare events directly, and some additional
assumptions are required for extrapolating the dependence
function into a far tail region. When H(x, y) = min(x, y), the two
variables are completely tail dependent. To distinguish asymptotic
independence and asymptotic dependence, Ledford and Tawn
(1996, 1997) introduced the coefficient of tail dependence. It is
well known that a bivariate normal distribution with correlation
coefficient between −1 and 1 is asymptotically independent. The
following theorem shows that the two treaties are asymptotically
dependent and become completely tail dependent when γ = 0.

Theorem 1. Under condition (2) and E{N(t)}l < ∞ for some fixed
l ≥ 2 and t > 0,
(i) if γ = 0, then for x, y > 0

lim
s→0

s−1P(GL(Ll(t)) > 1 − sx,GE(El(t)) > 1 − sy) = min(x, y);

(ii) if γ > 0 and xcE(γ ) < ycL(γ ) for x, y > 0, then

lim
s→0

s−1P(GL(Ll(t)) > 1 − sx,GE(El(t)) > 1 − ty)

=

∞
n=l

P(N(t) = n)
n!x

(n − l + 1)!(l − 2)!cL(γ )

×


−l−1γ −1 log xcE (γ )

ycL(γ )

0


∞

u
eγ vF(dv)

l−2

× eγ uF n−l+1(du) +

∞
n=l

P(N(t) = n)

×
n!y

(n − l + 1)!(l − 2)!cE(γ )

×


∞

−l−1γ −1 log xcE (γ )

ycL(γ )


∞

u
eγ vF(dv)

l−2

× e−(l−1)γ uF n−l+1(du);

Table 1
Pareto distribution. We calculate q̂ for q = {0.01, 0.001, 0.0001}, b = {0.2, 0.8},
and l = {2, 5}.

(l, b) = (2, 0.2) (5, 0.2) (2, 0.8) (5, 0.8)

q = 0.01 0.00958 0.01050 0.00950 0.01063
q = 0.001 0.00081 0.00081 0.00090 0.00099
q = 0.0001 0.00010 0.00012 0.00009 0.00009

(iii) if γ > 0 and xcE(γ ) ≥ ycL(γ ) for x, y > 0, then

lim
s→0

s−1P(GL(Ll(t)) > 1 − sx,GE(El(t)) > 1 − sy) = y.

Remark 1. It follows from Theorem 1 that the coefficient of tail
dependence of Ll(t) and El(t) is lims→0 s−1P(GL(Ll(t)) > 1 −

s,GE(El(t)) > 1−s) = 1when either γ = 0 or γ > 0 and cE(γ ) ≥

cL(γ ). Although the coefficient of tail dependence indicates
strongest tail dependence for these two cases, Theorem 1(i)
says that the tail of the two reinsurance treaties is completely
dependent only when γ = 0. In this case, it is not necessary to
hold both treaties when extreme risks are concerned. Hence, it is
useful to test H0 : γ = 0 against Ha : γ > 0; see Fraga Alves et al.
(2009), where a slightly different assumption from (2) is imposed.

Remark 2. It remains interesting to investigate the tail depen-
dence for Ll1(t) and El2(t) with different l1 and l2 and under
some different distribution assumption for the claim size such as
gamma-like tails in Hashorva and Li (2013).

Another interesting question is to study the tail behavior of a
linear combination aLl(t)+bEl(t) for some a, b ≥ 0 and a+b > 0,
which is given in the following theorem.

Theorem 2. Under conditions of Theorem 1, we have

lim
x→∞

P(aLl(t) + bEl(t) > x)
1 − F

 x
a+b


=

∞
n=l

P(N(t) = n)
n!

(n − l + 1)!(l − 2)!

×


∞

0
e

a−b(l−1)
a+b γ u


∞

u
eγ vF(dv)

l−2

F n−l+1(du)

for any a, b ≥ 0 and a + b > 0.

Remark 3. Again, it is of interest to extend the result in Theorem 2
to a linear combination aLl1(t) + bEl2(t) with different l1 and l2.

Next we examine the approximation accuracy in Theorem 2
by considering Pareto distribution FP(x) = 1 − x−1 for x ≥

1 and Inverse Gaussian distribution with density fIG(x; λ) =

( λ

2πx3
)1/2 exp{− λ(x−1)2

2x } for x > 0. Note that (2) holds with γ = 0
for the Pareto distribution and γ = λ/2 for the above Inverse
Gaussian distribution. We take t = 1, a + b = 1, l = 2 or 5, and
let N(t) be a Poisson process with intensity 10. First we find x = xq
for q = {0.01, 0.001, 0.0001} such that

{1 − F(x)}
∞
n=l

P(N(t) = n)
n!

(n − l + 1)!(l − 2)!

×


∞

0
e(1−bl)γ u


∞

u
eγ vF(dv)

l−2

F n−l+1(du) = q,

and then we simulate 100, 000 random samples from each of the
above settings to obtain the empirical quantile q̂ for estimating
P(aLl(t)+bEl(t) > xq). The values of q̂ are reported in Tables 1 and
2 below, which show that the approximation for γ = 0 is more
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