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a b s t r a c t

We analyze the tail of the sum of two random variables when the dependence structure is driven by the
Bernstein family of copulas. We consider exponential and Pareto distributions as marginals. We show
that the first term in the asymptotic behavior of the sum is not driven by the dependence structure when
a Pareto random variable is involved. Consequences on the Value-at-Risk are derived and examples are
discussed.
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1. Introduction

Risk aggregation is now a classical topic for researchers and
practitioners both in Finance and Insurance. The regulatory frame-
works of Basel (I, II and III) and Solvency (I and II) make it crucial to
understand how the various risks within a portfolio combine in or-
der to estimate future losses. The naive way to proceed is to add up
individual risks. This is of course not the best solution since assets
are usually correlated, especially in the midst of financial crises.

A very popular approach seeks to analyze themarginal behavior
of the risks separately from their dependence structure. The
natural way to proceed is to resort to copulas. More precisely, if
F1, . . . , Fn are the cumulative distribution functions (c.d.f.) of the
absolutely continuous random variables (r.v.) X1, . . . , Xn, then the
copula related to these r.v.s is the unique mapping C such that

P[X1 ≤ x1, . . . , Xn ≤ xn]
= C(F1(x1), . . . , Fn(xn)), (x1, . . . , xn) ∈ Rn.

We refer to the monograph (Nelsen, 2006) for more details on
the subject. Once the marginals and the copula are specified, it
becomes possible, though often complicated, to study the behavior
of P[X1 + · · · + Xn > x], as x → ∞. It seems intuitive that this
behavior should match, in some sense, that of the random variable
which has the heaviest tail. In fact, this is very often true, especially
when heavy tails are involved.
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More precisely, when X1 and X2 have the same heavy-tailed
distribution, then except for a handful of cases (see for instance
Theorem 2.10 in Albrecher et al., 2006),

lim
x→∞

P[X1 + X2 > x]
P[X1 > x]

= c > 0. (1)

When X1 and X2 have non identical heavy tailed distribution,
then these results usually hold if X1 is the random variable with
the heaviest tail. Many results of this form have blossomed and we
mention some of them in the footnote.1

Note that the asymptotic result in (1) can be very imprecise,
especially for the computation of extreme quantiles. For instance,
consider the random variable with c.d.f. given by

F(x) = P[X ≤ x] =


1 −

1
2x2

−
1
2x3


1{x≥1},

then obviously, 2P[X > x] = x−2
+ x−3 when x → ∞. If we

consider the quantile at the level p = 95%, then F−1(0.95) ≈

3.577. However, if we consider the first order approximation
2P[X > x] ∼ x−2, then the same quantile is estimated at 3.162,
which is a 13% relative error.

Second order expansions have emerged recently in the copula
related literature (Kortschak, 2012; Kortschak andHashorva, 2013)

1 See Albrecher et al. (2006), Alink et al. (2004), Assmussen and Rojas-Nandayapa
(2008), Barbe et al. (2006), Davis and Resnick (1996), Embrechts et al. (2009), Foss
and Richard (2010), Geluk and Tang (2009), Goovaerts et al. (2005), Ko and Tang
(2008), Kortschak and Albrecher (2009), Kortschak (2012), Laeven et al. (2005),
Mitra and Resnick (2009) and Wüthrich (2003).
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and provide, by definition, better estimates for extreme quantiles.
The purpose of this article is to show that the Bernstein family
of copulas enables to get second order asymptotics for the sum
of two dependent variables when the univariate distributions are
exponential and/or Pareto. In fact, as is shown in the proofs, higher
orders can easily be derived.

The remainder of the paper is structured as follows. In Section 2,
we present the setting and our main results. In Section 3, we
illustrate our findings with a particular example. An extension of
our method is provided in Section 4 and Section 5 concludes. All of
the proofs are provided in the Appendix.

2. Notations and main results

We first introduce the two types of parametric families of
distributions which we will consider. We denote exponentially
distributed r.v.s by the letter X , that is, for λi > 0, X (λi)

i
d
= E(λi)

will have density fi(x) = λie−λix1{x≥0} and c.d.f. Fi(x) = (1 −

e−λix)1{x≥0}.

Likewise, for aj > 0 and bj > 1, Y
(aj,bj)
j

d
= P (aj, bj) will follow a

Pareto distribution with density and c.d.f. given by

gj(x) = bja
bj
j (aj + x)−(bj+1)1{x≥0}, (1 − a

bj
j (aj + x)−bj)1{x≥0}.

We impose bj > 1 so that the variables we consider have fi-
nite mean. In many contexts, these random variables can be used
to model losses (Finance, Insurance, Risk Management, etc.). Note
that a scaling and a shift x → (x−µ)/σ in the c.d.f. give the law of
σX+µ andhence themodel becomesmore flexible effortlessly. For
notational convenience, we shall however henceforth set µ = 0
and σ = 1.

Now that the marginals have been defined, we turn to the de-
pendence structure. We start with the definition of the bivariate
Bernstein copula, which is a particular case of the copula intro-
duced in Sancetta and Satchell (2004):

CB(u, v)

=

m
i=0

m
j=0

a


i
m

,
j
m

m
i

m
j


ui(1 − u)m−ivj(1 − v)m−j. (2)

Sancetta and Satchel have shown that CB is indeed a copula when-
ever for vi = 0, 1, . . . ,m − 1, the function a verifies
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Note that this last condition implies a(0, v2) = a(v1, 0) = 0.
For notational convenience, we will use the simpler form

CB(u, v) =

m
i=1

m
j=1

ci,juivj, (u, v) ∈ [0, 1]2, (3)

where

ci,j =

i
k=1

j
l=1

a


k
m

,
l
m

m
k

 m
l

m − k
i − k


m − l
j − l


× (−1)i−k+j−l.

It is obvious that ci,j = cj,i andmoreover, the equality CB(1, 1) = 1
yields
m
i=1

m
j=1

ci,j = 1.

More precisely, using first order partial derivatives and conditional
probabilities, we get
1≤i,j≤m

ci,jiui−1
=


1≤i,j≤m

ci,jjvj−1
= 1, ∀u, v ∈ (0, 1),

which translates into
m
j=1

c1,j =

m
i=1

ci,1 = 1,

m
j=1

ck,j =

m
i=1

ci,k = 0, k ∈ {2, . . . ,m}.

This implies that for any function f well-defined on integers,
m
i=1

m
j=1

ci,jf (i) =

m
i=1

f (i)
m
j=1

ci,j

=

m
j=1

f (j)
m
i=1

ci,j = f (1). (4)

Originally, Bernstein copulas were introduced with a view to
approximate other copulas. However, they have since then been
used in various contexts (financial and actuarial notably), as is
pointed out in the introduction of Tavin (2013).

As the following theorems show, the simple form (3) enables
tractable computations for the asymptotics of the survival function
of the sum of two dependent variables.

Theorem 2.1 (Exponential Distributions). Let (X1, X2) follow a bi-
variate distributionwith exponentialmarginals and the Bernstein cop-
ula as dependence structure, then as z → ∞,

P

X (λ)
1 + X (λ)

2 > z


= λz


1≤i≤m
0≤j≤m

ci,jij

 e−λz
+ Cee−λz

+ o(e−λz)

and if λ1 < λ2 and λ1/λ2 ∉ {1/2, 2/3, 1/3}, then

P

X (λ1)
1 + X (λ2)

2 > z


= C1e−λ1z + C2e−λ2z + C3e−2λ1z

+ o(e−2λ1z),

where the constants Ce, C1, C2 and C3 are provided in the proof in
the Appendix.

Theorem 2.2 (Pareto Distributions). Let (Y1, Y2) follow a bivariate
distribution with Pareto marginals (with b2 > b1 > 1) and the
Bernstein copula as dependence structure, then as z → ∞,

P

Y (a1,b1)
1 + Y (a2,b2)

2 > z


= ab11 z−b1 + ab22 z−b2 + Cpz−b1−1

+O(z−b2−1
+ z−b1−b2 + z−b1−2),

where the constant Cp is provided in the Appendix.

Theorem 2.3 (Exponential and Pareto Distributions). Let (X, Y ) fol-
low a bivariate distributionwith X following an exponential law and Y
following a Pareto law and the Bernstein copula as dependence struc-
ture, then as z → ∞,

P[X (λ)
+ Y (a,b) > z] = abz−b

+ Cpez−b−1
+ o(z−b−1)

where the constant Cpe is provided in the proof in the Appendix.
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