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a b s t r a c t

An integral representation is derived for the sum of all claims over a finite interval when the claim value
depends upon its incurral time. These time dependent claims, which generalize the usual compound
model for aggregate claims, have insurance applications involving models for inflation and payment de-
lays. The number of claims process is assumed to be a (possibly delayed) nonhomogeneous birth process,
which includes the Poisson process, contagion models, and the mixed Poisson process, as special cases.
Known simplified compound representations in these special cases are easily generalized to the condi-
tional case, given the number of claims at the beginning of the interval. Applications to the case involving
‘‘two stages’’ are also considered.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction and background

There has beenmuchworkdone on the analysis of the aggregate
claim distribution when claim sizes are time dependent, so that
the distribution depends on their incurral time. Models involving
claims inflation and delays in claim payments may be formulated
in this manner.

The assumptions as to the number of claims incurred process
{Nt , t ≥ 0} are of utmost importance in terms of the analysis. In
particular, under the Poisson and mixed Poisson process assump-
tions, simplified representations in terms of compound distribu-
tions for the sum of all time dependent claims for claims incurred
in (0, t) are available (e.g., Guo et al. (2013) and references therein).
On the other hand, the analysis when {Nt , t ≥ 0} is a (possibly de-
layed) renewal (Sparre Andersen) process and related processes is
much more challenging (see, e.g., Léveillé and Adekambi (2012),
Woo and Cheung (2013), as well as references therein).

In this paper, we consider the case when {Nt , t ≥ 0} is a non-
homogeneous birth process, a model which is shown to be partic-
ularly suited for use in a time dependent claims context. The reader
is referred to Klugman et al. (2013, Chapter 7) and references
therein for a description of this process. In Section 2, we derive
an integral representation for the sum of the claim values over
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the interval (s, t) given that Ns = k. This representation is con-
venient for this situation due to the direct incorporation of the
claim occurrence times into the analysis, and is no more complex
than the unconditional sum over (0, t). Important special cases
of the nonhomogeneous birth process are the (nonhomogeneous)
Poisson process (e.g. Ross (1996)), the so-called contagion models
(e.g. Bühlmann (1970, Chapter 2)), and the mixed Poisson process
(e.g., Grandell (1997, Chapter 4)). In these special cases, simplified
compound distribution representations for the conditional distri-
butions over (s, t) are obtained in Section 3 from the general re-
sult, and these often generalize known results. Also, an application
in the context of a ‘‘two-stage’’ nonhomogeneous birth process is
briefly discussed in Section 4.

2. The general setup

Nonhomogeneous birth processes are discussed in detail by
Bühlmann (1970), Grandell (1997), Klugman et al. (2013), and ref-
erences therein. Only a few details relevant for the present analysis
are presented here. Of central importance to the analysis are the
transition probabilities

pk,k+n (s, t) = Pr (Nt − Ns = n|Ns = k) , n = 0, 1, 2, . . . , (1)

with probability generating function (pgf)

Pk,s,t (z) =

∞
n=0

pk,k+n (s, t) zn. (2)
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The marginal probabilities are given (under the assumption that
N0 = 0) by pn (t) = Pr (Nt = n) = p0,n (0, t). The transition
probabilities are characterized by the so-called transition intensi-
ties {λm (t) ,m = 0, 1, 2, . . .}. It is known that

pm,m (s, t) = e−
 t
s λm(y)dy, m = 0, 1, 2, . . . , (3)

and for general n ≥ 1, the probabilities given by (1) may be ob-
tained recursively in n. Explicit formulas are obtainable for some
choices of λm (t). See Klugman et al. (2013, Chapter 7), Willmot
(2010), and references therein for more details.

In the remainder of this paper, we are interested in the behavior
of the process after a fixed time s, given the value of Ns, say k.
Thus, the results hold for any Markov process which behaves as
a nonhomogeneous birth process thereafter. Thus for the ordinary
nonhomogeneous birth process itself, no assumptions need to be
made about λm (t) form < k, as follows from (3).

In what follows, let Tm (m = 0, 1, 2, . . .) represent the time
of the m-th claim, with realization denoted by tm. Also, let
hn,t (tk+1, tk+2, . . . , tk+n|k, s) denote the density function associ-
ated with the event that there are exactly n claims in (s, t) at times
tk+1 < tk+2 < · · · < tk+n where s < tk+1 and tk+n < t , given that
Ns = k. This density is of central importance in what follows, and
is now given explicitly.

Lemma 1. For n = 1, 2, . . . ,

hn,t (tk+1, tk+2, . . . , tk+n|k, s)

= e−
 t
s λk+n(y)dy

n
m=1

φk+m (tk+m|s) , (4)

where

φj (x|s) = λj−1 (x) e
 x
s {λj(y)−λj−1(y)}dy. (5)

Proof. It is clear from (3) that for

m = 1, 2, . . . , exp


−

 t∗

tk+m−1

λk+m−1 (y) dy


may be interpreted as the probability that Tk+m exceeds t∗, given
that Ntk+m−1 = k+m−1. Thus, λk+m−1 (y) is the associated failure
rate, and (assuming for the moment that tk = s), the joint density
of Tk+1, Tk+2, . . . , Tk+n|Ns = kmay thus be expressed as
n

m=1

λk+m−1 (tk+m) e−
 tk+m
tk+m−1

λk+m−1(y)dy.

In order to have exactly n claims in (s, t), there can be no more
claims in (tk+n, t), with probability exp


−
 t
tk+n

λk+n (y) dy

, im-

plying that

hn,t (tk+1, tk+2, . . . , tk+n|k, s)

= e−
 t
tk+n

λk+n(y)dy
n

m=1

λk+m−1 (tk+m) e−
 tk+m
tk+m−1

λk+m−1(y)dy. (6)

Simple rearrangements of (6) result in (4). �
An explicit expression for (1) follows immediately from

Lemma 1.

Lemma 2. The transition probabilities (1)may be expressed as

pk,k+1 (s, t) =

 t

s
h1,t (tk+1|k, s) dtk+1, (7)

and for n = 2, 3, . . . ,

pk,k+n (s, t) =

 t

s

 tk+n

s
. . .

 tk+2

s
hn,t (tk+1, . . . , tk+n|k, s)

× dtk+1dtk+2 . . . dtk+n. (8)

Proof. Integrating over all possible values of tk+1, tk+2, . . . , tk+n
results in (7) and (8). �

We now turn to the problem of interest, namely the analysis
of time dependent claims. To this end, let Xs,t be the sum total
of all claim values for claims incurred in (s, t), where the defini-
tion of a claim value depends on the particular quantity of inter-
est to be analyzed, as is discussed in more detail in the next para-
graph. See Klugman et al. (2013, Section 9.1) for a discussion of
this issue.We denote the conditional Laplace transform (LT) of Xs,t ,
given that Ns = k and there are exactly n claims in (s, t) at times
tk+1, tk+2, . . . , tk+n byfn,t (z|k, s, tk+1, . . . , tk+n). If we further as-
sume that the individual claim values are independent of all other
claim values, with distribution depending on nothing more than
possibly the incurral time, k, s and t , then we may write

fn,t (z|k, s, tk+1, . . . , tk+n) =

n
m=1

ft (z|k, s, tk+m) . (9)

Note that in (9),ft (z|k, s, x) is the LT of the claim value associated
with a claim incurral at x ∈ (s, t). While the independence as-
sumption is not necessary, we remark that insurance applications
to date involving inflation and payment delays have typically as-
sumed that a factorization of the form (9) holds.

In particular, a model for inflation assumes thatft (z|k, s, x) =f ze−
 x
s δydy


where δy is the net instantaneous rate of interest at

time y, andf (z) is the LT of the amount of a claim incurred at time
s. In this case, Xs,t is the discounted value at time s of the sum
of all claims incurred over (s, t). Similarly, a model for delays in
claim payments may be obtained with the choiceft (z|k, s, x) =

Bx

Wx (t − x) + W x (t − x)f ∗

x,t (z)

. In this case, Bx (z) is the pgf of

the number of claims resulting from a claim causing event at time
x, Wx (y) = 1 − W x (y) is the distribution function of the delay in
claim payment for a claim incurred at x, andf ∗

x,t (z) is the LT of the
amount of a claim incurred at x, valued at t . Then Xs,t is the value
at time t of the sum of all claims incurred in (s, t) and unpaid by
time t . See Klugman et al. (2013, Chapter 9) and references therein
for further details on these models.

We are now in a position to state the general result for the
aggregate claim values, conditional on Ns = k.

Theorem 3. Given that Ns = k, the aggregate claimvalues associated
with claims incurred in (s, t) has Laplace transform

E

e−zXs,t |Ns = k


= pk,k (s, t) +

∞
n=1

pk,k+n (s, t)fn,t (z|k, s) , (10)

where

f1,t (z|k, s) =

 t
s h1,t (tk+1|k, s)f1,t (z|k, s, tk+1) dtk+1 t

s h1,t (tk+1|k, s) dtk+1
, (11)

and for n = 2, 3, . . . , (see Box I)

Proof. Obviously, Xs,t = 0 if Nt − Ns = 0, and otherwise (10)
follows directly by conditioning on Nt − Ns = n, and the n claim
times Tk+1, . . . , Tk+n, together with (7) and (8). �

Clearly, (11) and (12) imply thatfn,t(z|k, s, tk+1, . . . , tk+n) may
be represented as a mixture, with mixing weights proportional
to hn,t (tk+1, . . . , tk+n|k, s). Also, it is useful to note that in the
important special case when (9) holds, (4) implies that for any
n, the integrand in (12) factors as a function of the integration
variables tk+1, tk+2, . . . , tk+n.

While the representation of Theorem 3 is extremely general,
a very useful simplification results if (9) holds and λj (x) for j =

k, k+1, . . . is such that φk+m (x|s), defined in (5) form = 1, 2, . . . ,
factors (for fixed k and s) as a function of m multiplied by a func-
tion of x. This is the case for (possibly) nonhomogeneous versions of
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