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• Immunization inequality for insurers’ surplus under random assets, liabilities and interest rates is proven.
• The resulting lower bound is of high precision for a variety of cases.
• Explicit formulas for portfolios of life liabilities vs streams of net premiums are provided.
• Applications for some well-known models of interest rates are treated.
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a b s t r a c t

In this paper,we investigate the problemof immunization of insurers’ surpluswhen liabilities are financed
by a stream of assets. The term structure of interest rates is assumed to be random, as are the streams of
assets and liabilities. A new inequality for changes in the portfolio surplus in response to changes in the
term structure of interest rates is proven. A comparison with other immunization inequalities shows that
it gives better lower bounds for a wide variety of scenarios. The inequality is sharp in the sense that the
lower bound is attainable for some interest rate perturbations. Whenever net insurance premiums are
considered, it is factorized into a product of two terms: one depending only on the change of interest
rates, and the other depending only on the portfolio structure. Hence the second term may be treated
as a measure of the interest rate risk. We call it L2-measure, because it is related to the second order
distance between assets and liabilities. Explicit formulas for this measure for portfolios of some life prod-
ucts vs streams of net premiums are given. Applications to the Merton’s, Vasicek’s and simple log-normal
models of interest rate are also provided.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The paper focuses on the problemhow interest rate fluctuations
can influence the valuation of portfolios consisting of assets and li-
abilities. The theory of the portfolio immunization is dating back to
the paper by Redington (1952) (see Shiu, 1990, Reitano, 1992, 1996
and Hürlimann, 2002 for more recent development of the theory).
It is also known as Asset–Liability Management as it refers to a
joint management of the streams of assets and liabilities. In partic-
ular, Redington was the first who said that both streams should be
valued consistently, using the same structure of interest rates. So
let us consider streams of portfolio incomes {A1, . . . , An} and out-
comes {L1, . . . , Ln} due at dates 0 < t1 < · · · < tn. We assume that
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the present value of every surplus Sj = Aj − Lj is established us-
ing a discount function corresponding to a given basic term struc-
ture of interest rates (TSIR). Let vj denote the present value, at time
t = 0, of a monetary unit due at t = tj, for any j ∈ {1, . . . , n}. Then
sj = Sjvj denotes the present value of the surplus Sj. The present
value of the whole portfolio is given by:

V =

n
j=1

sj.

We are interested in how much the value of the portfolio can
change in response to the changes in TSIR. Let s′j = Sjv′

j denote the
present value of the surplus Sj, at time t = 0, under the perturbed
TSIR. Then:

1V = V ′
− V =

n
j=1

s′j −
n

j=1

sj. (1)

The primary goal of immunization was to find conditions under
which 1V is nonnegative for any change in TSIR. However, this
postulate in general is contradictory with the assumption that ar-
bitrage is not allowed on the market (see Panjer, 1998 for details).
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Therefore Fisher andWeil (1971) gave sufficient conditions for per-
fect immunization but only for parallel shifts of the interest rate
intensity. On the other hand, Fong and Vasicek (1984), Nawalkha
and Chambers (1996), Shiu (1990), Gajek et al. (2005) and others
give lower bounds on 1V which may take negative values.

Fong and Vasicek (1984) assume durations of assets and liabili-
ties to be equal. Then the lower bound on (1) is a product of a term
depending on the derivative of the interest rate intensity changes
and M-Square of the portfolio. The model works well for the sce-
narios when the interest rates are shifted almost in parallel.

Themodel of Nawalkha and Chambers (1996) seems to bemore
general as the assumption of durations equality is excluded. The
boundon (1), givenbyNawalkha andChambers (1996), is a product
of two terms: one depending on the term structure perturbation
and the other being M-Absolute. In contrast with the traditional
approach, theM-Absolute model immunizes only partially against
the height shift, but it seems to reduce the risk caused by the shifts
in the slope, curvature and other term structure shape parameters.

Gajek et al. (2005) gave the bound on (1) which was based on
a different methodology. Instead of bounding the discount factors
from below, they used the Cauchy–Schwarz inequality. It enabled
to separate the changes in TSIR from the term structure of assets
and liabilities. In Section 2 we improve their inequality and extend
it to the case when all the interest rates, assets and liabilities are
stochastic processes.We give a lower bound on (1) of the following
form:

E

V ′

− V


≥
1
n
EV ·

n
j=1

Efj − L2(s) · L2(f), (2)

where s = (s1, . . . , sn), f = (f1, . . . , fn) with fj =
v′
j

vj
− 1 for

every j ∈ {1, . . . , n} and L2(x) =

n
j=1 E


xj − 1

n

n
j=1 Exj

2 1
2

for x = (x1, . . . , xn). The interest rates changes are allowed to be
measured only at the moments of payments, not in a continuous
time regime. It seems to reduce the overvalued role of short time
perturbations in TSIR in the approaches of Fong and Vasicek (1984)
and Nawalkha and Chambers (1996).

Portfolio immunization under additional restrictions on the
portfolio structure was treated by Gajek (2005).

In Section 3 we calculate theL2-measure for somewell-known
interest rates models. In Section 4 a more detailed comparison of
our approach with the ones given by Fong and Vasicek (1984),
Nawalkha and Chambers (1996) and Gajek et al. (2005) is pre-
sented. In particular, it is shown via numerical examples, that for
some scenarios of interest rate changes it works better than the
bounds known in the literature. In Section 5 applications to some
typical insurance products are provided.

2. The main result

Let us notice that:

1V = V ′
− V =

n
j=1

s′j −
n

j=1

sj =

n
j=1

sjfj, (3)

where fj =
v′
j

vj
− 1 for every j ∈ {1, . . . , n}.

We assume that the interest rates, assets and liabilities are
stochastic processes, hence the surplus s′j is a random variable for
every j ∈ {1, . . . , n}. The same concerns (1), and one can look for
a lower bound on its expected value. Throughout this paper we
will assume that fj, Aj and Lj have finite second moments for every
j ∈ {1, . . . , n} which is a technical assumption that imposes no
restrictions on applications of the model in practice.

Theorem 2.1. Let us denote s = (s1, . . . , sn) and f = (f1, . . . , fn).
Under the above assumptions, the following inequality holds:

E

V ′

− V


≥
1
n
EV ·

n
j=1

Efj − L2(s) · L2(f), (4)

where L2(x) =

n
j=1 E


xj − 1

n

n
j=1 Exj

2 1
2
for x = (x1, . . . ,

xn).

Proof. For any real λ and arbitrary random variables aj, bj, j ∈

{1, . . . , n} the following equality holds:

E
n

j=1

ajbj = E
n

j=1


aj −

1
n
a
 

bj − λ

+

1
n
ab, (5)

where a = E
n

j=1 aj and b = E
n

j=1 bj.
Applying identity (5) with aj = sj and bj = fj and observing thatn
j=1 aj = V we get:

E

V ′

− V


= E
n

j=1

sjfj = E
n

j=1


sj −

1
n
EV
 

fj − λ


+
1
n
EV ·

n
j=1

Efj.

By the Cauchy–Schwarz inequality for expected values we get:

E

V ′

− V


≥ −

n
j=1


E

sj −

1
n
EV
2
 1

2 
E

fj − λ

2 1
2

+
1
n
EV ·

n
j=1

Efj.

Now, applying the Cauchy–Schwarz inequality for sums, we
obtain:

E

V ′

− V


≥ −


n

j=1

E

sj −

1
n
EV
2
 1

2


n
j=1

E

fj − λ

2 1
2

+
1
n
EV ·

n
j=1

Efj. (6)

Since λ is an arbitrary real number we can choose it so that the
right side of inequality (6) is maximized. Observe that the lower
bound in (6) is maximal when the function

g (λ) =

n
j=1

E

fj − λ

2
attains its minimum. This holds for λ =

1
nE
n

j=1 fj. With this
choice of lambda, the result is proven. �

Theorem 2.1 can be easily adapted to the case when the time
horizon for the portfolio immunization is H (possibly greater than
0). Indeed, let us notice that:

1VH = V ′

H − VH =

n
j=1

s′j

v′

H
−

n
j=1

sj

vH
=

n
j=1

sj,H · fj,H ,

where sj,H =
Ajvj−Ljvj

vH
, fj,H =

vH
v′
H

·
v′
j

vj
− 1.

The following theorem can be proven analogously to Theo-
rem 2.1.
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