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HIGHLIGHTS

We study the price of Variable Annuity Guarantees (GAO and GMIB).

We use a local volatility model with stochastic interest rates.

We present a method to calibrate the local volatility model.

We compare prices obtained in a local, stochastic and constant volatility framework.
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In this paper, we study the price of Variable Annuity Guarantees, particularly those of Guaranteed Annuity
Options (GAO) and Guaranteed Minimum Income Benefit (GMIB), in the settings of a derivative pricing
model where the underlying spot (the fund) is locally governed by a geometric Brownian motion with
local volatility, while interest rates follow a Hull-White one-factor Gaussian model. Notwithstanding the
fact that in this framework, the local volatility depends on a particularly complex expectation where no
closed-form expression exists and it is neither directly related to European call prices or other liquid
products, we present in this contribution a method based on Monte Carlo Simulations to calibrate the
local volatility model. We further compare the Variable Annuity Guarantee prices obtained in three
different settings, namely the local volatility, the stochastic volatility and the constant volatility models
all combined with stochastic interest rates and show that an appropriate volatility modeling is important
for these long-dated derivatives. More precisely, we compare the prices of GAO, GMIB Rider and barrier
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types GAO obtained by using the local volatility, stochastic volatility and constant volatility models.
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1. Introduction

Variable Annuities are the insurance contracts that propose a
guaranteed return at retirement often higher than the current mar-
ket rate and therefore they have become a part of many retirement
plans. Variable Annuity products are typically based on an invest-
ment in a mutual fund composed of stocks and bonds (see for ex-
ample Gao, 2010 and Pelsser and Schrager, 2004) and offer a range
of options to give minimum guarantees and protect against nega-
tive equity movements. One of the most popular type of Variable
Annuity Guarantees in Japan and North America is the Guaranteed
Minimum Income Benefit (GMIB). At her retirement date, a GMIB
policyholder will have the right to choose between the fund value
at that time or (life) annuity payments based on the initial fund
value at a fixed guarantee rate. Similar products are available in
Europe under the name Guaranteed Annuity Options (GAO). Many
authors have previously studied the pricing and hedging of GMIBs
and GAOs assuming a geometric Brownian motion and a constant
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volatility for the fund value (see for example Milevsky and Promis-
low, 2001; Boyle and Hardy, 2003, Ballotta and Haberman, 2003,
Pelsser, 2003, Biffis and Millossovich, 2006, Marshall et al., 2010,
Chu and Kwok, 2007).

GAO and GMIB can be considered as long-dated options since
their maturity is based on the retirement date. When pricing long-
dated derivatives, it is highly recommended that the pricing model
used to evaluate and hedge the products takes into account the
stochastic behavior of the interest rates as well as the stochastic
behavior of the fund. Furthermore, the volatility of the fund can
have a significant impact and should not be neglected. It has been
shown in Boyle and Hardy (2003) that the value of the fund as well
as the interest rates and the mortality assumptions strongly influ-
ence the cost of these guarantees. Some authors consider the evo-
lution of mortality stochastic as well (see for example Ballotta and
Haberman, 2003 and Biffis and Millossovich, 2006). In van Haas-
trecht et al. (2010), van Haastrecht et al. have studied the impact
of the volatility of the fund on the price of GAO by using a stochastic
volatility approach.

Another category of models capable of fitting the vanilla market
implied volatilities are local volatility models introduced in 1994
by Derman and Kani and by Dupire in resp. Derman and Kani
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(1994) and Dupire (1994) and recently extended by, among others,
Atlan (2006) in a two-factor local volatility model with stochastic
interest rates; and then by Piterbarg (2006) and Deelstra and Rayée
(2012) in a three-factor model for the pricing of long-dated FX
derivatives. The main advantage of local volatility models is that
the volatility is a deterministic function of the equity spot and
time, which avoids the issue in working in incomplete markets
in comparison with stochastic volatility models. Therefore local
volatility models are more appropriate for hedging strategies. The
local volatility function is expressed in terms of implied volatilities
or market call prices and the calibration is undertaken on the entire
implied volatility surface directly. Consequently, the local volatility
models usually capture in a more precise manner the surface of
implied volatilities compared to the stochastic volatility models.

Stochastic volatility models are advantageous in that it is
possible to derive closed-form solutions for some European
derivatives. In van Haastrecht et al. (2010), the authors have
derived closed-form formulae for GAO prices in the Schobel and
Zhu stochastic volatility model combined with Hull and White
stochastic interest rates. However, the GMIB Rider, one of the pop-
ular products traded by insurance companies in North America (see
AnnuityFYI, 2009) has a more complicated payoff compared to a
pure GAO and therefore no closed-form solution exists for the price
of a GMIB Rider, not even in the Schébel and Zhu stochastic volatil-
ity model. The only way to evaluate a GMIB Rider is through the
use of numerical approaches, such as Monte Carlo simulations.

In this paper, we study the prices of GAO, GMIB Riders and bar-
rier type GAOs in the settings of a two-factor pricing model where
the equity (fund) is locally governed by a geometric Brownian mo-
tion with a local volatility, while interest rates follow a Hull-White
one-factor Gaussian model. In this framework, the local volatility
expression contains an expectation for which no closed-form ex-
pression exists and which is unfortunately not directly related to
European call prices or other liquid products. Its calculation can
be done by numerical integration methods or Monte Carlo sim-
ulations. Alternative approaches are to calibrate the local volatil-
ity from stochastic volatility models by using links between local
and stochastic volatility models or by adjusting the tractable local
volatility surface coming from a deterministic interest rates frame-
work (see Deelstra and Rayée, 2012).

Furthermore, we compare Variable Annuity Guarantee prices
obtained in three distinct settings, namely, the local volatility, the
stochastic volatility and the constant volatility models, all in the
settings of stochastic interest rates. We show that using a non con-
stant volatility for the volatility of the equity fund value can have
significant impact on the value of these Variable Annuity Guaran-
tees and that the impact generated by a local volatility model is not
equivalent to the one generated by a stochastic volatility model,
even if both are calibrated to the same market data.

This paper is organized as follows: Section 2 is a summary
of properties of the local volatility model in a constant interest
rates framework and of its extension in a stochastic interest rates
framework. In Section 3, we present an approach based on Monte
Carlo simulations for the calibration of the local volatility function
in the stochastic interest rates setting. In Section 4, we present
the three types of Variable Annuity Guarantees we study in this
paper, namely, the GAO, the GMIB Rider and barrier type GAOs.
In Section 4.1 we present the GAO, and then in Section 4.2 we
define a GMIB Rider and finally in Section 4.3, we study two
types of barrier GAO. Section 5 is devoted to numerical results. In
Section 5.1, we present the calibration procedure for the Hull and
White parameters and the calibration of the local volatility with
respect to the vanilla market. Sections 5.2-5.4 investigate how the
local volatility model behaves when pricing GAO, GMIB Rider and
barrier type GAOs (respectively) with respect to the Schébel-Zhu
Hull-White stochastic volatility model and the Black-Scholes
Hull-White model. Conclusions are given in Section 6.

2. The local volatility model: from a constant to a stochastic
interest rates framework

In a constant interest rates setting, the risk neutral probability
density of an underlying asset S can be derived from the market
prices of European options. More precisely, the risk neutral price
of a European Call with strike K and maturity T is given by

C(K,T) = e TEQ[(S; — K)*]

+0o0
= / (x — K)To(x, T)dx (m
0

where Q denotes the risk neutral measure, r is the constant interest
rate and where ¢ (x, T) corresponds to the risk neutral probability
density of the underlying asset S at time T. Differentiating this Eq.
(1) twice with respect to K one obtains the well-known equality
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Using these results, Dupire (1994) and Derman and Kani (1994)
introduced in 1994, in the setting of constant interest rates, the
so-called local volatility models for the underlying assets which
have a deterministic time and state-dependent volatility function,
consistent with the current European option prices. In a local
volatility model with constant interest rate, the underlying asset
S (paying a constant dividend yield q) is assumed to be governed
by the following risk neutral dynamics

ds(t) = (r — q)S(t)dt + o (t, S(t))S(t)dWSf2 ®), (2)

where WSQ (t) is a Brownian motion under the risk neutral measure
Q and where the diffusion function o (t, S(t)) satisfies conditions
such that Eq. (2) has a unique solution.

Dupire (1994) and Derman and Kani (1994) noted that there is a
unique volatility function consistent with European option prices,
and called it the local volatility function. Indeed, given a complete
set of European option prices for all strikes and expirations, this
local volatility function is given uniquely by
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o(T,K) = (3)

This local volatility model is very tractable since the local
volatility surface can directly be computed from vanilla option
market prices.

Another useful property of the local volatility model is its link
with stochastic volatility models. More precisely, if the underlying
spot is governed by the following risk neutral dynamics with
constant interest rate,

ds(t) = (r — @)S(t)dt + p (¢, v(t))S(t)dWSQ ®), (4)

and applying Gyongy's mimicking theorem Gyongy (1986), one can
show that the local volatility is given by the square root of the
conditional expectation under the risk neutral measure! Q of the
instantaneous equity stochastic spot volatility to the square at the
future time t, conditional on the equity spot level S(t) being equal
toK:

o (t, K) = VEQ[y2(t, v(t)) | S(t) = K]. (5)

Common designs for the function y (t, v(t)) are v(t), exp(s/v(t))
and +/v(t). The stochastic variable v(t) is often modeled by
a Cox-Ingersoll-Ross (CIR) process (such as the Heston model

1 Assuming that the risk neutral probability measure Q used in the stochastic
volatility framework is the same as the one used in the local volatility framework.
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