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h i g h l i g h t s

• The optimal reinsurance in the presence of counterparty default risk is found.
• An elegant and constructive procedure is provided for convex distorted risk measures.
• The effect of reinsurance over the policyholder welfare is discussed.
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a b s t r a c t

The optimal reinsurance arrangement is identified whenever the reinsurer counterparty default risk is
incorporated in a one-period model. Our default risk model allows the possibility for the reinsurer to
fail paying in full the promised indemnity, whenever it exceeds the level of regulatory capital. We also
investigate the change in the optimal solution if the reinsurance premium recognises or not the default
in payment. Closed form solutions are elaborated when the insurer’s objective function is set via some
well-known risk measures. It is also discussed the effect of reinsurance over the policyholder welfare. If
the insurer is Value-at-Risk regulated, then the reinsurance does not increase the policyholder’s exposure
for any possible reinsurance transfer, even if the reinsurer may default in paying the promised indemnity.
Numerical examples are also provided in order to illustrate and conclude our findings. It is found that
the optimal reinsurance contract does not usually change if the counterparty default risk is taken into
account, but one should consider this effect in order to properly measure the policyholders exposure. In
addition, the counterparty default risk may change the insurer’s ideal arrangement if the buyer and seller
have very different views on the reinsurer’s recovery rate.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Two parties are involved in a standard reinsurance contract: the
insurer, cedent, insurance buyer, or even simpler, buyer, who has an
interest in transferring part of its risk to the reinsurer, also known
as insurance seller, or even simpler seller. Let X ≥ 0 be the total
amount that the insurer is liable to pay during the duration of the
insurance contract, with the distribution function denoted by F(·)
and survival function F̄(·) = 1 − F(·). In addition, the right end-
point xF := inf{z ∈ ℜ : F(z) = 1} of the loss distribution could
be either finite or infinite, even though the finiteness assumption
would be more realistic. The reinsurance seller agrees to pay, R[X],
the amount by which the entire loss exceeds the insurer amount,
I[X]. Thus, I[X] + R[X] = X . There are many possible reinsurance
arrangements,whichdependon theparticular choice of the insurer
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and reinsurer sharing the premiums and underwritten risks. For
example, the liabilities are shared in a fixed proportion under
proportional reinsurance and therefore I[X] = cX , where c ∈

[0, 1]1 is a constant. Another common arrangement is the stop-loss
reinsurance contract, forwhich the buyer retained loss is limited to
a fixed amount, M , known as retention limit. The net amount paid
by the insurer is therefore given by min{X,M} := X ∧ M .

There is a vast literature on identifying the optimal risk transfer
contract between two insurance companies within a one-period
setting. The first attempts are attributed to Borch (1960) andArrow
(1963)where the expectedutility ismaximised. Further extensions
have been developed for various decision criteria that depend on
the risk measure choice (for example, see Van Heerwaarden et al.,
1989, Young, 1999, Kaluszka, 2001, 2005, Verlaak and Beirlant,
2003, Kaluszka and Okolewski, 2008, Ludkovski and Young, 2009).
Two commonly used in practice risk measures, Value-at-risk (VaR)
and Expected Shortfall (ES), are considered by Cai et al. (2008),
Cheung (2010) and Chi and Tan (2011). The classical risk model
setting has been successfully studied in the literature by Centeno
and Guerra (2010) and Guerra and Centeno (2008, 2010), where
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a natural choice for optimisation is the maximisation of the
adjustment coefficient.

The classical approach of finding the optimal risk sharing
ignores the possibility of default in payment that the risk transfer
initiator is exposed to, known as the counterparty default risk. This
can be viewed as a special case of the background risk, under
the additive background risk assumption. This setting has been
investigated by Dana and Scarsini (2007) via the expected utility
maximisation. The paper of Biffis andMillossovich (2012) is related
to the latter work and analyses the effect of counterparty default
risk under some economic constraints. Bernard and Ludkovski
(2012) deal with the same problem, but the loss given default is
considered loss-dependent. Our approach is different, in the sense
that the insurer prefers a risk measure when making a decision
of sharing the liability. In addition, the default is assumed to be
endogenous as it has been seen in Biffis and Millossovich (2012),
and the seller’s available assets are given by its regulatory capital.
That is, the loss of basic own funds which the insurer would incur
if the insurance seller defaults, known as the loss given default,
is assumed to be proportional to the excess of the indemnity
over the reinsurer level of capital requirements. Like any other
counterparty default risk model, there are pros and cons for our
choice, andwe believe that ourmodel is sufficiently rich to provide
an understanding of the change in the optimal arrangement if the
buyer incorporates the reinsurer chance to default.

As it has been anticipated, the reinsurer’s default in payment is
assumed to occur whenever the indemnity exceeds the reinsurer
capital. Motivated by the Solvency II regulatory requirements de-
veloped within the European insurance industry, where the risk
exposures are measured via VaR, we assume that the seller oper-
ates in an environment that is VaR regulated. The latter assump-
tion enables us to identify the solution of an infinite dimensional
optimisation problem by imposing mild and economically sound
restrictions for the set of possible risk transfers. Alternatively, one
may commit to a specific class of reinsurance contracts, such as
focusing only on the stop-loss arrangements, which allows one to
solve standard finite dimensional optimisation problems.

The VaR of a generic loss variable Z at a confidence level
a, VaRa(Z), represents the minimum amount of capital that makes
the insurance company to be solvent at least a% of the time. The
mathematical formulation is then given by

VaRa(Z) := inf{z ≥ z0 : Pr(Z ≤ z) ≥ a},

where z0 := sup{z ∈ ℜ : Pr(Z ≤ z) = 0} represents the left end
point of the distribution of Z . By convention, inf∅ = +∞ is true.

In the absence of default risk, the indemnity is R[X], otherwise
it is given by

R̃[X; δ] := R[X] ∧ VaRβ


R[X]


+ δ


R[X] − VaRβ


R[X]


+

,

where δ ∈ [0, 1] represents the recovery rate used to calculate the
loss given default. By definition, (z)+ = max{z, 0}. Note that the
seller is assumed to be VaR-regulated, and for example, β = 99.5%
whenever Solvency II is in force. Thus, the probability of default
is 1 − β , i.e. the insolvency probability allowed by the regulator.
Obviously, the no-default scenario is recovered if we set δ = 1.

The seller and buyer may have different beliefs about the
recovery rate, but it is likely that the insurer to bemore pessimistic
than the reinsurer. In this paper, it is assumed that 0 ≤ δ1 ≤

δ2 ≤ 1, where δ1 and δ2 are the recovery rates of the buyer and
seller, respectively. Let P


R̃[X; δ2]


be the reinsurance premium if

the seller incorporates the default risk. Therefore, the total insurer
loss becomes

L̃[X; δ1, δ2] := X − R̃[X; δ1] + P

R̃[X; δ2]


.

A large class of such risk measures is given by

ϕ(Z) :=

 1

0
VaRs(Z)Φ(s) ds =


∞

0
g

Pr(Z > z)


dz

−

 0

−∞


g

Pr(Z > z)


− 1


dz, (1.1)

where Φ(s) = g ′(1 − s). This class is known as the distorted (see
Wang and Young, 1998 and Jones and Zitikis, 2003) and spectral
(see Acerbi, 2002) class of risk measures, respectively. Note that
the distorted function g : [0, 1] → [0, 1] is assumed to be non-
decreasing and concave such that g(0) = 0 and g(1) = 1. There-
fore, g(·) is differentiable almost everywhere, but not necessarily
differentiable on [0, 1]. Consequently, using the usual derivative
g ′(·), whenever it exists, does not change the representation from
(1.1) (for further details, see Dhaene et al., 2012).

The previously-mentioned class includes the well-known ES
risk measure, which has various representations in the literature
(see Acerbi and Tasche, 2002). We only refer to the next definition:

ESα(Z) :=
1

1 − α

 1

α

VaRs(Z) ds = VaRα(Z)

+
1

1 − α
E

Z − VaRα(Z)


+
.

Interestingly, this risk measure is a special case of the Haezen-
donck–Goovaerts class, which was introduced many years ago by
Haezendonck and Goovaerts (1982). Further details can be found
in Bellini and Rosazza Gianin (2012), Goovaerts et al. (2004, 2012)
and the references therein.

We aim to identify the optimal arrangement that reduces the
seller’s risk as much as possible, where the risk is evaluated via
VaR or a distorted risk measure. VaR and ES are standard tail risk
measures used in practice to set technical provisions and capital
requirements, and therefore, it is natural to believe that both are
good choices for the insurance company to base its decision. That
is, we intend to minimise ϕI


L̃[X; δ1, δ2]


over a set of feasible

reinsurance contracts, where ϕI(·) represents a measure of the
risk taken by the insurer. In order to avoid potential moral hazard
issues related to the reinsurance arrangement, the set of feasible
contracts is given by
F :=


R(·) : I(x) = x − R(x) and

R(x) are non-decreasing functions

.

Note that R ∈ F implies that I and R are 1-Lipschitz functions,
i.e. |I(y) − I(x)| ≤ |y − x| and |R(y) − R(x)| ≤ |y − x| are true for
all x, y ≥ 0.

The premiums are usually assumed to be positively loaded, and
therefore it is expected to have that P


R̃[X; δ2]


≥ E


R̃[X; δ2]


.

A common insurance pricing is the expected value principle,
P

R̃[X; δ2]


= (1 + c)E


R̃[X; δ2]


, where c > 0 is known as the

security loading factor. Our results are given for a more general
pricing method, where the seller prices the premium based on a
distorted risk measure. That is, P


R̃[X; δ2]


= (1 + c)ϕR


R̃[X; δ2]


,

where ϕR(·) is a distorted risk measure. Besides its general
formulation, distorted risk measures have proved to be valuable
choices for insurance pricing (see for example, Wang, 2000).

The rest of the paper is organised as follows. Section 2
investigates the VaR-based decisions, while Section 3 evaluates
optimal arrangements based on distorted risk measures. Section 4
explains the effect of reinsurance over the policyholder welfare.
The last section provides some numerical examples that aremeant
to illustrate our main results and conclude the paper.

2. VaR-based optimal reinsurance contract

The current section describes the optimal choice for the buyer if
VaRmeasures its perception about risk. In other words, we assume
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