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h i g h l i g h t s

• Propose copula methods for systemic risk analysis of financial institutions.
• Develop methodology for stress testing the financial market using copulas.
• Derive new procedures for conditional simulation of Archimedean and vine copulas.
• Analyze and stress test CDS spreads of 38 major international institutions.
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a b s t r a c t

Since the financial crisis of 2007–2009 there is an active debate by regulators and academic researchers
on systemic risk, with the aim of preventing similar crises in the future or at least reducing their impact.
A major determinant of systemic risk is the interconnectedness of the international financial market.
We propose to analyze interdependencies in the financial market using copulas, in particular using
flexible vine copulas, which overcome limitations of the popular elliptical and Archimedean copulas.
To investigate contagion effects among financial institutions, we develop methods for stress testing by
exploiting the underlying dependence structure. New approaches for Archimedean and, especially, for
vine copulas are derived. In a case study of 38 major international institutions, 20 insurers and 18 banks,
we then analyze interdependencies of CDS spreads and perform a systemic risk stress test. The specified
dependence model and the results from the stress test provide new insights into the interconnectedness
of banks and insurers. In particular, the failure of a bank seems to constitute a larger systemic risk than
the failure of an insurer.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Dealing with the lessons learned from the financial crisis, the
discussion about systemic risk has become more and more impor-
tant. The collapse of LehmanBrothers in 2008 showed that the sud-
den and uncontrolled breakdown of a global financial company not
only affected other financial institutions and seriously endangered
the stability of the global financial sector but also had a great im-
pact on the real economy of several countries around the world. As
a result, the Financial Stability Board (FSB) developed guidelines to
assess the systemic importance of financial institutions, markets,
and instruments. The FSB defines systemic risk as ‘‘the risk of dis-
ruption to financial services that is (i) caused by an impairment of all
or parts of the financial system and (ii) has the potential to have seri-
ous negative consequences for the real economy’’ (Financial Stability
Board, 2011). Furthermore, an institution, market, or instrument is
regarded as systemic if ‘‘its failure or malfunction causes widespread
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distress, either as a direct impact or as a trigger for broader contagion’’
on the financial system and/or the real economy.

The systemic relevance of an institution can be assessed based
on several criteria that have been identified by the FSB. The three
most important are size, lack of substitutability, and interconnect-
edness: Financial institutions whose ‘‘distress or disorderly failure,
because of their size, complexity, and systemic interconnectedness,
would cause significant disruption to the wider financial system and
economic activity’’ (Financial Stability Board, 2011) are called sys-
temically important. These institutions will face additional reg-
ulatory measures to reduce the systemic risk imposed by them.
The Basel Committee on Banking Supervision (2011) and the Inter-
national Association of Insurance Supervisors (2012) have devel-
oped methodologies to determine globally systemically important
banks and insurers, respectively. The assessment methodology for
insurers differs to that used for banks, since it takes into account
the fundamental differences in the business models of banks and
insurance companies. While a systemic classification of insurers
has not been published yet, a list of globally systemically important
banks is released on a yearly basis. In 2012, there were 28 banks on
this list (Financial Stability Board, 2012).
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Despite the popular expression ‘‘too big to fail’’, it has been ar-
gued in recent literature that the interconnectedness of an institu-
tion is much more important in the assessment of systemic risk:
Cont andMoussa (2010) and Cont et al. (2013) find that the impact
of the failure of an institution strongly depends on the interdepen-
dencies among institutions and less on its size. Similarly, Markose
et al. (2012) observe in their analysis of interconnectedness in
the US banking sector that only a few major institutions play a
dominant role in terms of network centrality and connectivity.
With respect to contagion in the US insurance sector, Park and Xie
(2011) evaluate the impact of reinsurer downgradings on US prop-
erty–casualty insurers and conclude that a systemic crisis caused
by reinsurance transactions is rather unlikely. Billio et al. (2012)
analyze the interdependencies among financial institutions from
different sectors using principle component analysis and Granger
causality networks and detect an interesting asymmetry in the fi-
nancial system, as banks are more likely to transmit shocks than
insurers, hedge funds or brokers/dealers. Hence, in light of this re-
search, it is more appropriate to speak of systemically important
institutions as ‘‘too (inter-)connected to fail’’.

The exploration of contagion and interconnectedness is also
the topic of this article. We propose to use copulas to analyze
interdependencies in the global financial market, notably in the
banking as well as in the insurance sector and not in both sectors
in isolation, as it is often done. In doing so, we aim to find
out whether there are significant differences in the dependence
structure among banks and among (re-)insurers. As a statistical
tool for dependence modeling, copulas allow for an accurate
analysis beyond linear correlations and common multivariate
Gaussiandistributions. Therefore,wenot only consider the popular
classes of Archimedean and elliptical copulas, but also the more
recently proposed vine copulas (see Kurowicka and Joe, 2011
and Czado et al., 2013 for recent overviews). Such vine copulas
allow to take into account tail and asymmetric dependencies and
therefore overcome limitations of the elliptical copulas that are
typically used in larger dimensional dependence analysis. Vine
copulasmay also providemore parsimonious parameterizations of
multivariate distributions and therefore constitute useful models
for a flexible dependence analysis (see also Brechmann and Czado,
forthcoming).

Stress testing is an important tool for the assessment and clas-
sification of systemic risk. The systemic relevance of an institution
is decisively determined by the potential impact of its failure on
other institutions. It is therefore crucial to analyze such stress sit-
uations in the market by taking into account the interdependence
among the institutions. Statistically speaking, we are interested in
the following situation: Let X := (X1, . . . , Xd)

′ be a random vec-
tor of risk quantities. Then we are interested in the case X−i|Xi =

xi, i ∈ {1, . . . , d}, where X−i denotes the random vector X without
the ith component and the event {Xi = xi} corresponds to a stress
situation. For instance, let Xi be the company value, then a stress
situation occurs when xi is very small. Clearly, such an analysis re-
quires the availability of the conditional distribution ofX−i|Xi = xi,
given the specific underlying dependence model. As this distribu-
tion is typically not known in closed form, conditional simulation
algorithms are needed for the scenario analysis. While these are
straightforward and well known in the case of elliptical copulas,
we derive appropriatemethods for Archimedean and vine copulas.

The methodology developed in this article is used in a case
study of 38 important financial institutions from all over theworld,
among them 20 insurers and 18 banks. Their credit default swap
spreads, as market-based indicators of the credit worthiness, are
statistically analyzed and appropriate multivariate dependence
models are constructed. A stress testing exercise then provides
insights into the systemic relevance of the different institutions.
We detect differences among regional markets and, in addition,

among the banking and the insurance sector. Interestingly, the
classification of globally systemically important banks is hardly
reflected in the data. Furthermore, the analysis reveals new results
regarding the classification of insurers, which, however, cannot yet
be compared to an official classification.

The remainder of the paper is structured as follows. Section 2
provides the necessarymethodological background on copulas and
vine copulas in particular. Conditional copula simulation for the
classes of elliptical, Archimedean and vine copulas is then treated
in Section 3. The case study is presented in Section 4. Section 5
concludes.

2. Copulas

The statistical notion of dependence is closely related to the
concept of copulas. In the first place, a d-dimensional copula simply
is a multivariate distribution function on [0, 1]d with uniform
marginal distribution functions. According to the theorem by Sklar
(1959), any multivariate distribution is directly linked to a copula.
Let X = (X1, . . . , Xd)

′
∼ F with marginal distribution functions

F1, . . . , Fd, then Sklar (1959) shows that

F(x1, . . . , xd) = C(F1(x1), . . . , Fd(xd)),

(x1, . . . , xd)′ ∈ (R ∪ {−∞,∞})d, (2.1)

where C is a d-dimensional copula. That is, Sklar’s Theorem
(2.1) allows to decompose any multivariate distribution in terms
of its margins and a copula that specifies the between-variable
dependence. If X is a continuous random vector, then the copula
C is unique and themultivariate density f of X can be decomposed
as

f (x1, . . . , xd) = c(F1(x1), . . . , Fd(xd))f1(x1) . . . fd(xd), (2.2)

where c is the density of the copula C and f1, . . . , fd are the
marginal densities of f . More details on copulas in general can be
found in the comprehensive reference books by Joe (1997) and
Nelsen (2006). Here, we concentrate on the popular classes of el-
liptical and Archimedean copulas as well as themore recently pro-
posed vine copulas, which are also known as pair-copula construc-
tions.

If F is an elliptical distribution function (see Fang et al., 1990
and McNeil et al., 2005), then the associated copula C is also called
elliptical. More precisely, an elliptical copula is defined through
inversion of Sklar’s Theorem (2.1) as

C(u1, . . . , ud) = F(F−11 (u1), . . . , F−1d (ud)),

(u1, . . . , ud)
′
∈ [0, 1]d,

where F is elliptical and F1, . . . , Fd are the corresponding mar-
gin distribution functions. The most popular examples of ellipti-
cal copulas are the Gaussian copula with correlation matrix R =
(ρij)i,j=1,...,d ∈ [−1, 1]d×d and the Student’s t copula with corre-
lation matrix R ∈ [−1, 1]d×d and ν > 2 degrees of freedom. In
addition to being reflection symmetric (if U ∼ C , then it also holds
that 1 − U ∼ C , where 1 := (1, . . . , 1)′), the Gaussian copula is
tail independent, while the Student’s t copula exhibits symmetric
lower and upper tail dependence (Embrechts et al., 2002).

Another important class of copulas are Archimedean copulas.
For a generator function ϕ : [0, 1] → [0,∞) with ϕ(1) = 0
and d-monotone inverse ϕ−1 (see McNeil and Nešlehová, 2009) a
d-dimensional Archimedean copula is defined as

C(u1, . . . , ud) = ϕ−1 (ϕ(u1)+ · · · + ϕ(ud)) ,

(u1, . . . , ud)
′
∈ [0, 1]d. (2.3)

Popular Archimedean copulas are the Clayton, Gumbel and Frank
copulas, which possess properties different to those of the
elliptical copulas, such as asymmetric tail dependence. From
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