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h i g h l i g h t s

• The paper reminds the iterativity property and its application.
• We study when the zero-utility principle under Cumulative Prospect Theory is iterative.
• The sufficient and necessary conditions for iterativity are stated.
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a b s t r a c t

In the paper we analyze the iterativity condition for zero utility principle adjusted to Cumulative Prospect
Theory. We prove, under mild conditions, that the premium principle is iterative if and only if the value
function is linear or exponential and probability distortion functions are identities, i.e. the probabilities
are not distorted.

© 2013 Elsevier B.V. All rights reserved.

1. Cumulative Prospect Theory and zero utility principle

In the rank-dependent utility model it is assumed that prob-
abilities are distorted by some increasing function g : [0, 1] →

[0, 1] such that g(0) = 0 and g (1) = 1, called probability distor-
tion function (e.g. Segal, 1989, Denneberg, 1994). Let G denote the
class of all probability distortion functions. For a fixed g ∈ G and
non-negative randomvariableX , the Choquet integral is defined by

EgX :=


∞

0
g (P (X > t)) dt.
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Further we assume that all random variables are defined on some
probability space (Ω,A, P). If X takes a finite number of values
x1 < x2 < · · · < xn with probabilities P (X = xi) = pi > 0,
then EgX = x1 +

n−1
i=1 g (qi) (xi+1 − xi), where qi =

n
k=i+1 pk; in

particular for n = 2 we have EgX = x1 (1 − g (p2))+ g (p2) x2.
For g, h ∈ G and an arbitrary random variable X we define the

generalized Choquet integral as

EghX = EgX+ − Eh (−X)+ ,

provided that both integrals are finite. Here and subsequently,
X+ = max {0, X}. The generalized Choquet integral is intro-
duced by Tversky and Kahneman (1992) for discrete random vari-
ables and is used to describe the mathematical foundations of
Cumulative Prospect Theory. In numerous experiments Tversky
and Kahneman notice that probabilities of losses are distorted in a
different way than probabilities of gains. They suggest replacing
the utility function with a value function that depends on relative
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payoff. In contrast to expected utility theory, the value function
measures losses and gains but not absolute wealth. Under Cumu-
lative Prospect Theory, both value function as well as probability
distortion function do not have to be differentiable.

Now, we remind a premium principle which is a modification
of the zero-utility principle adjusted to Cumulative Prospect
Theory. Let X be a non-negative random variable. Consider an
insurance company which has a reference point w ≥ 0 (e.g.
initial wealth) and which wants to sell an insurance policy paying
out the monetary equivalent of the random loss X . Further,
we call (X − w)+ losses (or catastrophic losses) and (w − X)+
gains (or non-catastrophic losses). In the latter case there is a
direct analogy with stop-loss reinsurance. Assume that u1, u2 :

R+ → R+ are some strictly increasing value functions, where u1
measures gains and u2 measures losses. Let g and h be probability
distortion functions of gains and losses, respectively. Kaluszka and
Krzeszowiec (2012) introduce the premium H(X) for insuring X as
the solution of

u1(w) = Egu1

(w + H(X)− X)+


− Ehu2


(X − w − H(X))+


. (1)

Notice that (1) can be rewritten as

u(w) = Eghu (w + H(X)− X) (2)

with strictly increasing function u(x) = u1 (x+) − u2

(−x)+


for

x ∈ R. Gerber (1979) considers a similar equation for premium
H(X) under the assumptions that the value function u is concave
and probabilities are not distorted, i.e. g(p) = h(p) = p. In
a more general model, Heilpern (2003) assumes that h(x) =

1 − g (1 − x) , g is convex and the value function is concave. Van
der Hoek and Sherris (2001) analyze a functional with different
probability distortion functions for gains and losses. However, they
study only the case when the value functions are linear. Goovaerts
et al. (2010) consider a risk measure obtained by applying the
equivalent utility principle in rank-dependent utility and analyze
when such defined risk measure is additive. It turns out that the
risk measure introduced by them corresponds to the premium
H(X) determined from (1) under w = 0. Further, we assume that
u is continuous, strictly increasing and u(0) = 0. If u is linear
or exponential, then after rewriting (2), we can obtain explicit
formulas for H(X) (see Kaluszka and Krzeszowiec, 2012).

We define the conditional generalized Choquet integral as

Egh (X |Y ) =


∞

0
g (P (X+ > s|Y )) ds

−


∞

0
h

P

(−X)+ > s|Y


ds,

if both integrals are finite. Then H (X |Y ) is introduced as the
solution of

u(w) = Egh [u (w + H (X |Y )− X) |Y ] .

A premium principle H(X) is said to be iterative, if

H(X) = H (H (X |Y ))

for all random variables X and Y , provided that both H(X) and
H (H (X |Y )) exist.

The concept of iterativity dates back at least to Bühlmann
(1970), who explains the difference between risk (individual) and
collective premium. In order to calculate an individual premium,
an insurer takes into account all the features of decision maker’s
risks. If the parameter y of the aforementioned risk is known,
then H (X |y) is the premium for risk X whose characteristic is y.
However, this specific feature y is usually a realization of some
random variable Y . Therefore, the collective premium cannot be
determined in a similar straightforward way, but it should be

calculated in two steps. Firstly, an insurance company should
determine H (X |Y ), which is a random variable dependent on Y .
Then, a risk structure Y should be compensated by evaluating
H (H (X |Y )). Since the premium H(X) is in most cases different
from H (H (X |Y )), there appears a problem to find under which
circumstances these two values are the same.

Our main result of this paper is as follows:

Theorem 1. (i) If g(p) = h(p) = p and u(x) = cx, u(x) =
1 − e−cx


/a or u(x) = (ecx − 1) /a for x ∈ R and some

a, c > 0, then H(X) which is the solution of (2) is iterative.
(ii) Let u be a strictly increasing value function such that for all

x ∈ R there exists the right-sided derivative of u which is finite
and greater than 0 for all x ≠ 0. Let g, h ∈ G be strictly
increasing and continuous on [0, 1] and suppose there exist finite
one-sided derivatives g ′

−
(x) and h′

+
(x) for x ∈ (0, 1) and 0 <

h′
+
(0), g ′

−
(1) < ∞. If the premium principle H(X) is iterative for

w = 0, then g(p) = h(p) = p and u(x) = cx, u(x) = 1 − e−cx

or u(x) = ecx − 1 for all x ∈ R and some a, c > 0.

The proof of Theorem 1 is given in Section 2. In this theoremwe
do not assume that functions u, g and h are differentiable which is
consistent with the assumptions of Cumulative Prospect Theory.

Gerber (1974) proves that the premium principle which
satisfies a continuity condition is iterative if and only if it is
mean-value principle, i.e. it is the solution of v (H(X)) =

Ev(X), where v is a strictly increasing, convex and twice
differentiable function. Under mild assumptions on value function
and probability distortion functions, Theorem 1 states that the
zero utility principle adjusted to Cumulative Prospect Theory is
iterative if and only if the value function is linear or exponential
and probability distortion functions are identities. It is known
that if probabilities are not distorted, the zero utility principle
with a linear or exponential value function is also the mean-value
principle. Therefore, the main theorem of this paper is consistent
with the result by Gerber (1974).

A generalization of the result by Gerber is given by Goovaerts
and De Vylder (1979). They prove that the Swiss principle is
iterative if and only if it reduces to mean-value principle or zero
utility principlewith a linear or exponential utility function. Gerber
(1979) also notices that if S = X1 + · · · + XN is a random sum and
premiumprincipleH(X) is both additive and iterative, thenH(S) =

H (H (S|N)) = H (H(X) · N). Moreover, Goovaerts et al. (2010)
conclude that if the premium principle is a mixture of exponential
functions, then it is iterative if and only if the mixture function is
degenerate.

2. Proofs

Let I ⊂ R be an interval and f : I → R. Further, we write f ′(x)
to denote the right-sided derivative of f at x ∈ I \ {sup I}.

Lemma 2. Let f : [0, 1] → R be continuous. If f is right differen-
tiable at every point x ∈ [0, 1) and f ′(x) = 0 for all x ∈ [0, 1), then
f is constant on [0, 1].

Remark 3. The proof of Lemma 2 is given by Rajwade and
Bhandari (2007). The assumption on continuity of f cannot be
omitted. In fact, the function f (x) = 1[x0,1](x), with x0 ∈ (0, 1],
satisfies the equation f ′(x) = 0 for all x ∈ [0, 1) but f is not
constant on [0, 1].

Remark 4. Let f : [0, 1] → R be continuous and f (0) = a, where
a ∈ R is fixed. Suppose that f satisfies the differential equation
f ′(x) = g(x) for all x ∈ [0, 1), where function g is known. If G is a
continuous solution of this differential equation, then (f − G)′ =

0. From Lemma 2 it follows that G is the unique solution of the
equation f ′(x) = g(x).
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