
3D seismic reverse time migration on GPGPU

Guofeng Liu n, Yaning Liu, Li Ren, Xiaohong Meng
School of Geophysics and Information Technology, China University of Geosciences, Beijing 100083, China

a r t i c l e i n f o

Article history:
Received 25 October 2012
Received in revised form
21 May 2013
Accepted 22 May 2013
Available online 5 June 2013

Keywords:
Reverse time migration
CUDA
Random boundary condition
Shared memory

a b s t r a c t

Reverse time migration (RTM) is a powerful seismic imaging method for the interpretation of steep-dips
and subsalt regions; however, implementation of the RTM method is computationally expensive. In this
paper, we present a fast and computationally inexpensive implementation of RTM using a NVIDIA
general purpose graphic processing unit (GPGPU) powered with Compute Unified Device Architecture
(CUDA). To accomplish this, we introduced a random velocity boundary in the source propagation kernel.
By creating a random velocity layer at the left, right, and bottom boundaries, the wave fields that
encounter the boundary regions are pseudo-randomized. Reflections off the random layers have minimal
coherent correlation in the reverse direction. This process eliminates the need to write the wave fields to
a disk, which is important when using a GPU because of the limited bandwidth of the PCI-E that is
connected to the CPU and GPU. There are four GPU kernels in the code: shot, receiver, modeling, and
imaging. The shot and receiver insertion kernels are simple and are computed using a GPU because the
wave fields reside in GPU's memory. The modeling kernel is computed using Micikevicius's tiling method,
which uses shared memory to improve bandwidth usage in 2D and 3D finite difference problems. In the
imaging kernel, we also use this tiling method. A Tesla C2050 GPU with 4 GB memory and 480 stream
processing units was used to test the code. The shot and receiver modeling kernel occupancy achieved
85%, and the imaging kernel occupancy was 100%. This means that the code achieved a good level of
optimization. A salt model test verified the correct and effective implementation of the GPU RTM code.

& 2013 Elsevier Ltd. All rights reserved.

1. Introduction

During the past few decades, three types of seismic prestack
depth migration methods have been developed. The first method
is Kirchhoff-based and uses ray tracing to approximate Green's
function of wave propagation. This method can provide successful
image results when the subsurface structure variations are mild
(Thierry et al., 1999; Operto et al., 2000; Gray, 2005). However, if
the subsurface structure contains extremely strong variations,
such as salt bodies, then this method results in an inaccurate
image of the subsurface. The second method is called one-way
wave equation migration (Claerbout and Doherty, 1972; Gazdag,
1978) and uses full-waveform Green's functions for wave propaga-
tion. In theory, this method can obtain better images than
Kirchhoff-based methods. The one-way wave equation migration
algorithms decompose the seismic wave fields into upgoing and
downgoing waves; however, these waves cannot generate reflec-
tions between layers. Additionally, turning waves are missing in
these types of wave propagation simulations, which results in
the poor imaging of steep-dip events around 901 (Zhang, 1993).

The third method is called reverse time migration (RTM) and uses
the two-way wave equation for wave propagation calculations.
This method has the theoretical advantage of unlimited dip and
better amplitude behavior. Currently, RTM is considered the best
seismic prestack depth migration method (Huang et al., 2009).

RTM is not a new seismic prestack depth migration method.
It was first introduced in the late 1970s (Hemon, 1978) and has
been shown to have promising imaging capabilities (Baysal et al.,
1983; Whitmore, 1983; McMechan, 1983; Loewenthal and Mufti,
1983; Bednar and Bednar, 2006). However, the intensive computa-
tional requirements of this method have limited its practical
application, especially when a high-order scheme in both space
and time is used (Chen, 2009) or an output angle gather is needed
(Xu et al., 2011; Tang et al., 2013).

With recent advancements in computing capacity, a three-
dimensional (3D) prestack RTM is now feasible (Yoon et al., 2003,
2004; Farmer et al., 2006; Nemeth et al., 2008; Micikevicius, 2008).

Driven by the insatiable market demand for real-time, high-
definition 3D images, programmable NVIDIA graphic processing
units (GPUs) have been developed for high-performance comput-
ing as co-processors for central processing units (CPUs). NVIDIA's
GPUs contain a novel architecture known as Compute Unified
Device Architecture (CUDA), which acts as a program module
and compiler technology for general purpose GPU programming.

Contents lists available at SciVerse ScienceDirect

journal homepage: www.elsevier.com/locate/cageo

Computers & Geosciences

0098-3004/$ - see front matter & 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.cageo.2013.05.009

n Corresponding author. Tel./fax: +86 010 82321331.
E-mail addresses: liugf@cugb.edu.cn, liugfs@163.com (G. Liu).

Computers & Geosciences 59 (2013) 17–23

www.sciencedirect.com/science/journal/0098-3004
www.elsevier.com/locate/cageo
http://dx.doi.org/10.1016/j.cageo.2013.05.009
http://dx.doi.org/10.1016/j.cageo.2013.05.009
http://dx.doi.org/10.1016/j.cageo.2013.05.009
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.cageo.2013.05.009&domain=pdf
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.cageo.2013.05.009&domain=pdf
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.cageo.2013.05.009&domain=pdf
mailto:liugfs@163.com
http://dx.doi.org/10.1016/j.cageo.2013.05.009


The CUDA C language is an extension to the C programming language
that makes it easier to allow hardware access to the massive parallel
capabilities of modern GPUs without requiring the programmer to
construct logical operations as graphical instructions. CUDA C pro-
gramming involves running code simultaneously on two different
platforms: a “host” system with one or more CPUs and a “device”
system with one or more CUDA-enabled NVIDIA GPUs. The device
code is always called a kernel, and is compiled and linked with a
NVIDIA driver to run on a GPU (NVIDIA, 2011).

GPGPU has been used successfully in Kirchhoff-based imaging
(Shi et al., 2011) and one-way wave equation imaging (Liu et al.,
2012), both of which yield a great improvement in efficiency from
GPU usage. For reverse time migration, choosing the most suitable
hardware to deal with the intensive computation is also an issue
(Clapp et al., 2010). In this paper, we present a solution for using
RTM with GPGPU.

2. Algorithm overview

We begin with the acoustic wave equation,

∂2u
∂t2

¼ v2
∂2u
∂x2

þ ∂2u
∂y2

þ ∂2u
∂z2

� �
ð1Þ

where u is the pressure and v is the velocity of the subsurface
material. The central component of the RTM algorithm that solves
Eq. (1) is a finite difference modeling kernel, that uses second-
order and higher-order finite difference algorithms to approximate
the time and space derivatives. The following pseudo-code shows
how the algorithm propagates forward for nt steps with an
interval of dt. The mesh has nx, ny, nz cells in the x, y, and z
directions, indexed by ix, iy, and iz, with intervals of dx, dy, and dz.
The algorithm uses a second-order approximation of the time and
space derivatives.

2-order Modeling kernel
____________________________________
Input: velocity model v

wavefields(it), s(it-1)
dt

Output: wavefields(it+1)
____________________________________
for (it¼3;itont;it++){

for(ix¼2;ixonx;ix++){
for(iy¼2;iyony;iy++){

for(iz¼2;izonz;iz++){
s(iz,iy,ix,it)¼2*s(iz,iy,ix,it-1)-s(iz,iy,ix,it-2)+
v(iz,iy,ix)*v(iz,iy,ix)*dt*dt*s(iz,iy,ix,it)*8-
(s(iz-1,iy,ix,it)+s(iz+1,iy,ix,it))/dz/dz-
(s(iz,iy-1,ix,it)+s(iz,iy+1,ix,it))/dy/dy-
(s(iz,iy,ix-1,it)+s(iz,iy,ix+1,it))/dx/dx;

} }
} }

In the RTM process, the kernel models two wave fields: the
forward source wave field and the receiver wave field. The forward
source wave field sðz; y; x; tÞ is modeled using a wavelet as the
source. The source wave propagates from t ¼ 0 to t ¼ tmax. The
reflection wave field is the backward time propagation of the
receiver wave field gðz; y; x; tÞ, taken during the same shot from
t ¼ tmax to t ¼ 0. The reflections where the energy propagates from
the source and the receiver are located at the same position at the
same time. The final image is the summation of correlations
between the source and receiver wave fields at every time step

and for every shot record in the seismic data.

imageðz; y; xÞ ¼ ∑
shots

∑
t ¼ tmax

t ¼ 0
sðz; y; x; tÞngðz; y; x; tÞ ð2Þ

The following pseudo-code displays how RTM is implemented
by the modeling kernel.

Forward propagation Backward propagation and
imaging

________________________ _____________________________
Input: velocity model Input: velocity model

Shot location Receivers' traces and
locations

Source wavefields
Output: forward wavefields Output: image(i)
________________________ ______________________________
for(it¼0;to itmax;it++) for(it¼ itmax;it40;it–) {
{
get s(it+1)with algorithm
(1) iz,iy,ix loop;

get g(it-1)with algorithm (1) iz,
iy,ix loop;

add source wavelet add receivers' wavefields
store s(it+1) to the disk imagine

} _____________________________
read s(it-1) from disk
for(i¼0;ionz*ny*nx;i++){
image(I)¼ image(I)+s(I,it-1)*g(I,
it-1);
}

Two factors slow the RTM calculations. The first is the intensive
computation necessary in the modeling module. In order to obtain
a stable and non-dispersive solution, we must use small time steps
and grid intervals, and higher-order approximations of the space
derivatives. These requirements make the modeling module the
most computationally demanding task of the RTM. The second
bottleneck is the memory transformation from the CPU to the disk.
It is impractical to store the four-dimensional volumes sðz; y; x; tÞ
and gðz; y; x; tÞ in the CPUmemory because these volumes are often
several terabytes in size. To solve this problem, the source wave
fields must be stored to the disk. These issues can be fixed or
bypassed using the GPU method that will be introduced in this
paper. Because the GPU only has a memory size of four or less
gigabytes, we must first determine how to deal with the large size
of the source wave field data.

3. The CUDA implementation of reverse time migration

3.1. Random boundary conditions for source wave field propagation

In the RTM process introduced above, because the wave fields
must be correlated at equivalent time positions, the source wave
fields must propagate from t ¼ 0 to t ¼ tmax while the receiver
wave fields must propagate from t ¼ tmax to t ¼ 0. One propagation
must be stored to the disk and read back to memory from the disk
during the imaging step.

Symes (2007) and Dussaud et al. (2008) discussed checkpoint
methods for handling the different propagation directions.
Dussaud et al. (2008) and Clapp (2009) suggested an alternate
approach for propagating the source wave fields to the maximum
recording time and reversing the propagation to maintain con-
sistency with the receiver propagation direction. The use of
damping schemes around the boundary makes it necessary to
inject energy as undamped, forward propagating wave fields into

G. Liu et al. / Computers & Geosciences 59 (2013) 17–2318



Download English Version:

https://daneshyari.com/en/article/507673

Download Persian Version:

https://daneshyari.com/article/507673

Daneshyari.com

https://daneshyari.com/en/article/507673
https://daneshyari.com/article/507673
https://daneshyari.com

