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HIGHLIGHTS

o We develop links between credibility theory and quantiles.

e Quantiles are embedded within the classical Bithlmann’s (1967) credibility.

e Quantiles are embedded within Hachemeister’s (1975) regression credibility model.
e Credibility estimation is based on the influence function for the p-quantiles.
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In this paper, we develop links between credibility theory and quantiles. More specifically, we show
how quantiles can be embedded within the classical Bithlmann’s (1967) credibility model and within
Hachemeister’s (1975) regression credibility model. The context of influence function is also incorporated
into the above two models. For each model, credibility estimators are established and applications to real

data are presented.
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1. Introduction

Credibility is a premium estimation technique for a group of in-
surance contracts in the case where we have some claim experi-
ence for that group and a lot more experience for a larger group of
contracts that are similar but not exactly the same.

Biihlmann (1967) and Biihlmann and Straub (1970) established
the theoretical foundation of modern credibility theory presented
as a distribution free credibility estimation. The method extended
in Hachemeister’s (1975) regression model, where the credibility
premium depends linearly on a number of risk characteristics.
Jewell (1974) has shown that credibility is exact Bayesian for a
certain exponential family of distributions with natural conjugate
priors.

In the actuarial literature, there are a lot of papers in credibility
theory within the framework of the exponential family. The reader
may be referred to Bithimann and Gisler (2005), Sundt (1999) and
Goovaerts et al. (1990).

Furthermore, Landsman and Makov (1997) extended the results
on the exponential family to a richer family of distributions, the
exponential dispersion family, which comprises of several distri-
butions, some of which are heavy-tailed and as such could be of
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significant relevance to actuarial science. Young (1997) applied de-
cision theory to develop a credibility formula that minimizes a loss
function that is a linear combination of a squared-error term and a
second derivative term. Payandeh Najafabadi (2010) approximated
the Bayes estimator with respect to a general loss function and gen-
eral prior distribution by a convex combination of the observation
mean and mean of prior (approximate credibility formula), for a
family of symmetric log-concave distributions with a location pa-
rameter.

The aim of this paper is to present the credibility (empirical
Bayes) estimation of quantiles. More specifically, we incorporate
quantiles into the Bithlmann’s (1967) classical credibility model
and into Hachemeister’s (1975) regression credibility model. The
quantile regression objective function is a weighted sum of abso-
lute deviation, which gives a robust measure of location, so that
the estimated coefficient vector is not sensitive to outlier observa-
tions on the dependent variable. Also, when the error term is non-
normal, quantile regression estimators may be more efficient than
the least squares estimation.

In the insurance industry some legislation rules indicate that
some changes over time occurred across the claim distribution.
Therefore, it is essential to examine these changes at different
points of the distributions. For example, Australian insurance regu-
lations (Solvency) require that a risk margin should be established
at 75% percentile of the discounted value of liabilities less than
the best estimate; see Pitt (2006). Furthermore, based on quantiles
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the following risk measures can be estimated: (a) the value at risk
(VaR), in actuarial context known as the quantile risk measure or
quantile premium principle and (b) the conditional tail expectation
(CTE) known as Tail Value at Risk.

When the form of the distribution of X is not specified the nat-
ural distribution-free estimator of the p-quantile, &,, is the sam-

ple p-quantile, ép, of &,. Here we shall adopt a linear empirical
Bayes empirical approach. The linear Bayes estimation introduced
by Robbins (1955), discussed in depth by Hartigan (1969) and Mor-
ris (1983), and the linear empirical Bayes estimation of quantiles
discussed by Maritz (1989).

For the regression case, regression curve provides a summary
for the average of the distribution, while the quantile regression
compares several different regression curves corresponding to the
various percentage points of the distributions providing a more
complete picture of the set of distributions. The book of Koenker
(2005) provides an overview of regression quantiles methodolo-
gies, as well as a variety of applications from economics, biology,
ecology, and finance.

In the literature of actuarial science, there are some papers
dealing with quantiles. The paper of Pitt (2006) demonstrates the
importance of modeling quantiles given the growing interest of
regulators and others in stochastic approaches to valuation of
insurance liabilities and risk margins. Kudryavtsev (2009) used
quantile regression for rate-making including safety loadings and
described the advantages of the quantile regression approach.
Gebizlioglu and Yagci (2008) constructed tolerance intervals for bi-
variate quantiles of the bivariate risk distributions. Denuit (2008)
provided accurate approximations for the quantiles of the con-
ditional expected present value of the payments to the annuity
provider, given the future path of the Lee Carter time index. Pitselis
(2009) applied regression quantile techniques to investigate the
adequacy of the own funds a company requires to remain healthy
and avoid insolvency. These techniques may also provide early
warning of insurer insolvencies. Portnoy (1997) used regression
quantiles for graduation of Australian life tables. The idea of quan-
tiles embedded into credibility framework was presented for the
first time by Pitselis (2007) at the IME conference in Piraeus 2007.

The paper is organized as follows. Section 2 presents a brief in-
troduction of quantile functions. In Section 3 we briefly present
Bithimann’s (1967) credibility model and the derivation of the clas-
sical credibility model within a quantile framework. In Section 4
we present a brief introduction on quantile regression. In Section 5
we present Hachemeister’s (1975) regression model and the de-
velopment of a quantile regression credibility model. Section 6
presents the influence function for the p-quantiles as well as for
the regression quantiles and incorporated them for the credibility
estimation. Applications to real data are presented in Section 7 and
some concluding remarks are in Section 8.

2. Preliminaries on quantiles

In this section we provide a brief introduction on quantile
functions and estimators of quantile, later needed for credibility
estimation. For a given data set Xy, ..., X, let F(x) = P[X < x] the
associated distribution function, which is continuous everywhere
and differentiable. We want to estimate the quantile function

&, 0<p<1

The quantile of a distribution is defined as
& =F~'(p) = inf{x: F(x) > p}. (2.1)
Let X(1y, . .., X(n) denote the order statistics of Xi, ..., X, and let

é\p denote the sample p-quantile. It has the fundamental property
that for —co <x <ocand0 <p < 1,

F(x) > p, ifandonlyif &, <x.

When F is continuous, &, satisfies

&= F~Y(p) = inf{x : F(x) > p} ifand only if
F&)=p, 0<p=<T1.

Given a sample X, ..., X, of a continuous random variable X,
the empirical distribution function can be defined as
F,(x) = fraction of X1, ..., X, thatis <x.

The empirical quantile function can be defined as
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for ]

§p§iandj:1,...,n. (2.2)
n

Then the derivative of ép is given by

ép/ :n(X(,-) _XU_1))’ fOl'J <p= ]Eandj: 1,...,n.

We call n(X(jy — Xj-1)), j = 1, ..., nthe spacing of the sample.
The most important fact about 51; is that it is asymptotically ex-
ponentially distributed with mean “;‘1;. The sample spectral density
of a stationary time series has an analogous property, see Parzen
(1979).

Estimators of quantiles which may behave better in small sam-
ples from symmetric densities can be obtained by a shifted piece-
wise linear function
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andj=1,...,n. (2.3)
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The &, is undefined forp < ;- orp > 1— ... Now the derivative
of ép is given by
2 —1 2 +1

£ = n(X1) — X)) for <p< .
&, = nX+1) — X¢) T =p=—

In parametric models, when F is of a known location scale type
§p—0
o

F(% ,then F(&,) = F(? = p,and therefore, z, =

with F(z,) = p and &, = oz, + 0. Then estimate 6 and o by the
maximum likelihood estimation or by optimal linear combinations
of order statistics. After, use the goodness of fit test, for testing
the null hypothesis for various specifications of z, corresponding
to well known probability distributions, including long tail distri-
butions (Cauchy, Pareto, extreme value, etc.), or use a mixture of
distributions (robust parametric model).

In a non-parametric context, estimate z, by estimating the den-
sity quantile function or, through suitable plots of the sample
quantile functions of transformations of the data. For more on
quantile functions, see Parzen (1979, 2004).

3. Credibility models

In this section we briefly revisit Bithlmann’s classical credibility
model and provide quantile credibility estimation for this model.
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