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h i g h l i g h t s

• Wemodel dependence within a group of lives using a multivariate gamma distribution.
• Model calibration is based on the method of moments and developed for truncated observations.
• The impact of dependence is demonstrated by applying the model to annuity valuation.
• Evidence is provided that confirms the relevance of dependent lifetimes.
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a b s t r a c t

Systematic improvements in mortality increases dependence in the survival distributions of insured
lives, which is not accounted for in standard life tables and actuarial models used for annuity pricing
and reserving. Systematic longevity risk also undermines the law of large numbers, a law that is relied
on in the risk management of life insurance and annuity portfolios. This paper applies a multivariate
gamma distribution to incorporate dependence. Lifetimes are modelled using a truncated multivariate
gamma distribution that induces dependence through a shared gamma distributed component. Model
parameter estimation is developed based on the method of moments and generalized to allow for
truncated observations. The impact of dependence within a portfolio, or cohort, of lives with similar risk
characteristics is demonstrated by applying themodel to annuity valuation. Dependence is shown to have
a significant impact on the risk of the annuity portfolio as compared with traditional actuarial methods
that implicitly assume independent lifetimes.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Systematic improvements inmortality increases dependence in
the survival distributions of insured lives, which is not accounted
for in standard life tables and actuarial models used for annu-
ity pricing and reserving. Systematic longevity risk also under-
mines the law of large numbers; a law that is relied on in the risk
management of life insurance and annuity portfolios. Given recent
worldwide trends by employers towards the elimination of pen-
sion scheme liabilities, understanding systematic longevity risk is
especially relevant for bulk annuity providers; see, e.g., Hull (2009).
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This paper applies a multivariate gamma distribution to model
dependent lifetimes within a pool of individuals. We make use of
the following representation of the gamma density:

f (x) =
αγ

Γ (γ )
xγ−1e−αx, x > 0,

where γ is the shape parameter and α is the rate parameter.
Lifetimes are oftenmodelled with parametric distributions such as
the gamma distribution; see, e.g., Klein and Moeschberger (1997).
Dependence between the lifetimes is captured with a common
stochastic component. The multivariate dependence structure is
developed from the trivariate reduction method used to generate
two dependent random variables from three independent random
variables. This trivariatemethodwas used to generate the bivariate
version of the multivariate gamma distribution in Chereiyan
(1941). The method uses the fact that the sum of gamma random
variables with the same rate parameter also follows a gamma
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distribution with that same rate parameter. The trivariate method
was generalized to multivariate reduction and the bivariate
gamma distribution model extended to the multivariate setting
by Ramabhadran (1951) and applied byMathai andMoschopoulus
(1991), Chatelain et al. (2006), and others.

The paper develops estimation theory for amultivariate gamma
distribution in the presence of truncation. To quantify the effect
of dependence, life annuities are valued with the model and
compared with valuation under the assumption of independent
lifetimes. Given that the marginal distributions of lifetimes are
unchanged when introducing dependence, the expected present
value of the annuity payment streams are equivalent in the
comparison. However, the variance is significantly larger when
dependence is introduced. Risk-based capital reflects the variance
of the payment stream, and the cost of this capital is reflected in
the market pricing of annuities. Hence, we provide evidence that
dependence is a significant factor with important implications for
annuity pricing and risk-based capital. This agrees with previous
investigations by Dhaene et al. (2000), Denuit et al. (2001), and
others. The model presented here provides a tractable method for
estimating the dependence and computing the distribution of life
annuity values, a similar problem previously considered by, for
example, Denuit (2008) and Dhaene and Denuit (2007). Finally, an
assessment of themodel fit to data is provided based onNorwegian
population mortality. Some insight is provided on ways in which
the fit can be improved, the implementation ofwhich is anticipated
in future research.
Organization of the paper. Section 2 defines themultivariate gamma
dependence structure for survival models for a pool of lives.
Section 3 provides the estimation of the parameters of the model
by method of moments. We consider the case when samples are
given both with and without truncation. The former is essentially
more complicated, but is required in practice. The performance
of the estimation methods is assessed by simulation. Section 4
outlines the application to survival theory including implications
for annuity values and portfolio risk based on standard deviation
of values. Section 5 reports the fitting of the model to Norwegian
population data. Section 6 concludes the paper.

2. Multivariate gamma survival model

The model is applied to individuals within a pool of lives.
We assume M pools of lives. The pools can, in general, be of
individuals that share characteristics indicative of a common risk
factor, for example, age. Let Ti,j be the survival time of individual
i ∈ {1, . . . ,Nj} in pool j ∈ {1, . . . ,M}. Although the number of
lives in each pool need not be identical, we make this assumption
for simplicity and continue with Nj = N for all j. We assume the
following model for the individual lifetimes:

Ti,j = Y0,j + Yi,j,

where

• Y0,j follows a gamma distribution with shape parameter γ0 and
rate parameter αj,G(γ0, αj), j ∈ {1, . . . ,M},

• Yi,j follows a gamma distribution with shape parameter γj and
rate parameter αj,G(γj, αj), i ∈ {1, . . . ,N} and j ∈ {1, . . . ,M},
and

• the Yi,j are independent, i ∈ {0, . . . ,N} and j ∈ {1, . . . ,M}.

Hence, there is a common component Y0,j within each pool j
that impacts the survival of the individuals of that pool (i.e., Y0,j
captures the impact of systematic mortality dependence between
the lives in pool j). The parameters γj and αj can jointly be
interpreted as the risk profile of pool j.

From the properties of the gamma distribution it immediately
follows that the survival times Ti,j are also gamma distributed with

shape parameter γ̃j = γ0 + γj and rate parameter αj. One can see
that, within each pool, individual lifetimes are dependent, and all
follow the same gamma distribution, G(γ̃j, αj). A consequence of
the model is that lives from different pools are mutually indepen-
dent. The dependence considered in our model is pool specific. Al-
though, in reality, any two lives are not strictly independent, it is
reasonable to assume that certain groups of lives are more closely
related due to common risk factors. Such lives would exhibit a
higher level of dependence than others. Our model is effectively
based on the assumption that the pools under consideration have
much stronger commonmortality risks than individualsmore gen-
erally. Since the focus of our research is on the impact of depen-
dence for a pool, the model provides an appropriate basis to assess
this.

3. Parameter estimation

In this section, we consider parameter estimation using the
method of moments. For an excellent reference we can suggest,
for example, Lindgren (1993, Chapter 8, Theorem 6). Parameter
estimation for the bivariate gamma distribution has been previ-
ously studied by Chatelain et al. (2006); they investigated both
maximum likelihood and the method of moment estimation. For
the multivariate gamma distribution, expressions of the probabil-
ity density function can become rather challenging. For this reason,
we establish our estimation procedure on themethod ofmoments.

Notation

Before we undertake parameter estimation, we provide some
necessary notation concerning raw and central, theoretical and
sample, moments. Consider arbitrary random variable X . We
denote with αk(X) and µk(X) the kth, k ∈ Z+, raw and central
(theoretical) moments of X , respectively. That is,

αk(X) = E[Xk
],

µk(X) = E[(X − α1(X))k].

Next, consider random sample X = (X1, . . . , Xn)
′. The raw sample

moments are given by

ak(X) =
1
n

n
i=1

Xk
i , k ∈ Z+.

ForX1, . . . , Xn identically distributed, the raw samplemoments are
unbiased estimators of the corresponding raw moments of X1:

E[ak(X)] = αk(X1).

Finally, we define the adjusted second and third central sample
moments as

m2(X) =
1

n − 1

n
i=1

(Xi − a1(X))2,

m3(X) =
n

(n − 1)(n − 2)

n
i=1

(Xi − a1(X))3.

For X1, . . . , Xn independent and identically distributed, these
(adjusted) central sample moments are unbiased and consistent
estimators of the corresponding central moments of X1:

E[m2(X)] = µ2(X1) and E[m3(X)] = µ3(X1).

3.1. Parameter estimation for lifetime observations

We assume we are given samples, T1, . . . , TM , from the pools,
where Tj = (T1,j, . . . , TN,j)

′. This assumption requires the data
used for calibration to be based on observed lifetimes for past lives.
We allow for truncation, which is addressed in the paper, and leave
allowance for censoring for future research.
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