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h i g h l i g h t s

• We survey several algorithms for the simulation of random probability distributions.
• We show how to simulate random distributions with given risk measures.
• We consider the case of vanilla risk measures: the Value at Risk and the Expected Shortfall.
• We suggest a new algorithm for simulating random distributions with given spectral risk measure.
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a b s t r a c t

We describe several simulation algorithms that yield random probability distributions with given values
of risk measures. In case of vanilla risk measures, the algorithms involve combining and transforming
random cumulative distribution functions or random Lorenz curves obtained by simulating rather general
random probability distributions on the unit interval. A new algorithm based on the simulation of a
weighted barycentres array is suggested to generate random probability distributions with a given value
of the spectral risk measure.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Simulation methods for random variables and stochastic
processes form an essential part of applied probability and
statistics. The most common situation consists in simulating
random variables with given distributions. In the financial context
this would correspond to simulating, e.g. asset prices, gains or
losses, if their distribution is known.

However, in many practical situations the distribution from
which the data come is not specified. In these circumstances, it
is necessary first to simulate the distribution and then sample
random variables from it. A simple example is the stock price
that follows a log-normal distribution with unknown volatility.
Such distributions form a parametric family, and it is easy to

∗ Corresponding author. Tel.: +41 31 631 8801; fax: +41 31 631 3870.
E-mail addresses: ignacio.cascos@uc3m.es (I. Cascos), ilya@stat.unibe.ch,

ilya.molchanov@stat.unibe.ch (I. Molchanov).

simulate first the randomvolatility value and then sample from the
corresponding log-normal distribution. In the Bayesian statistics
framework, the distribution of the volatility could be termed the
prior distribution; the observed data are then used to arrive at the
posterior distribution of the unknown parameter.

In a non-parametric context, one needs a prior distribution on
the family of probability measures without artificially restricting
attention to a particular subfamily of probability distributions,
e.g. the normal or log-normal ones. Motivated by this, Ferguson
(1974) introduced random Dirichlet probability measures so that
the values of the measure on any partition follow the Dirichlet
distribution. It is known that these random probability measures
are discrete with probability one.

Several known constructions of random continuous probability
measures are mentioned in Section 2; see also Monticino (2001)
for a comprehensive and instructive survey. Some of these con-
structions result in absolutely continuous probability distributions,
while others always produce singular ones. It is essential that the
constructed random probability distributions have full support in
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the space of all probability measures, meaning that each weakly
open set of probabilitymeasureswith positive probability contains
a simulated random distribution.

A further body of work concerns constructions of random
probability measures with given mean or the distribution of the
mean; seeHill andMonticino (1998). Randommeasureswith given
mean and variance have been constructed in Bloomer and Hill
(2002).

In this paper we address the problem of choosing at random
a continuous probability measure on the real line which has
particular values of risk measures associated with it, in particular
the value at risk and the expected shortfall; see, e.g., Föllmer and
Schied (2004) and themore recent study of Goovaerts et al. (2010),
where also relationships to Actuarial Science are emphasised.
These risk measures are recalled in Section 3 and their connection
to Lorenz curves is mentioned. Several operations suitable to
combine Lorenz curves are discussed in Section 4.

The construction of random probability distributions with
prescribed risks described in Section 5 is based on the calculation of
the generalised random Lorenz curves associated with simulated
random cumulative distribution functions. The key tool consists
in transforming random Lorenz curves and combining several of
them.

Our simulation technique uses as input any construction
of random probability measures (possibly with a given mean)
so that it leads either to absolutely continuous, discrete, or
singular measures depending on the choice of the underlying
algorithm. In the case of continuous probability measures, it yields
random distributions with the full support property. It means
that the simulated random distribution with a positive probability
belongs to each open set of probability measures intersected with
the family of probability measures having given values of risk
measures and given essential infimum and essential supremum.

A lot of attention in Actuarial Science is devoted to finding
bounds of certain risk measures for random variables with some
fixed characteristics, for example, moments or values of other risk
measures; see Goovaerts et al. (2011) and Kaas et al. (2009). This
problematic is also extremely important in the case of several
risks, whose dependence structure is unknown or complicated,
with the aim to bound the combined risk; see Embrechts et al.
(2005); Embrechts and Puccetti (2006) and also Kaas et al. (2009).
While the worst case bounds are extremely important, they may
be substantially wider than those encountered in most realised
cases. In view of this, the decision maker may be interested in
average bounds that would be derived with the help of simulating
a number of random distributions. This may be termed as Monte
Carlo methods in the space of probability measures.

Simulating random distributions with given values of risk
measures (reflecting prior beliefs and limited knowledge) may
be helpful to compare various possible scenarios and try various
strategies in order to find one that performs better on average or in
the prescribed majority of cases. Simulating random distributions
is useful to explore the variability of other features of probability
distributions with given risk measures and also for training
purposes for prospective decision makers.

2. Continuous random distribution functions

A random cumulative distribution function (cdf) is a function
sampled at random from the family of non-decreasing right-
continuous functions on the real line such that their limit at−∞ is
0 and at +∞ is 1. By mapping the real line into [0, 1], it is possible
to reduce this simulation problem to choosing a probability
distribution on [0, 1]. The following well-known algorithms yield
random distributions with support equal to [0, 1].

Dubins and Freedman (1967). Algorithm DF starts with selecting
a point at random in the unit square S = [0, 1]2 according to
a probability distribution µ, deleting the upper left and lower
right rectangles defined by this point and selecting one point at
random according to the rescaled µ in each of the remaining
rectangles. The procedure is repeated, i.e. at each step a new point
is selected in each of the remaining rectangles so that 2n−1 points
are selected at step n and 2n rectangles obtained. The union of
the remaining rectangles converges to the graph of a random
cumulative distribution function. The obtained distribution is
continuous if and only if µ assigns probability zero to the
vertical edges of S and a positive probability to the interior of
S. Furthermore, if µ does not assign probability 1 to the main
diagonal of S (i.e. the DF algorithm does not generate the uniform
distribution on [0, 1]), then the generated randomdistributions are
almost surely singular.
Graf et al. (1986). This special case of the DF algorithm arises
if the reference measure µ is supported by {1/2} × [0, 1]. The
first random point in [0, 1]2 has x-coordinate 1/2, while its y-
coordinate is sampled fromµ and becomes the value F(1/2) of the
random cdf F . The next points are sampled from [0, F(1/2)] and
[F(1/2), 1] using the rescaled µ and their values are assigned to
F(1/4) and F(3/4) respectively, etc. In thisway, F acquires random
values on all dyadic rationals and then is extended by continuity.

The construction of Graf et al. (1986) extends the work by
Kraft (1964), who showed how to choose the base measure µ
in order to arrive at an almost surely absolutely continuous
distribution F . Mauldin and Monticino (1995) suggested a variant
of this algorithm allowing possibly different basemeasuresµ at its
various steps.
Hill and Monticino (1998) suggested an algorithm to produce a
probability distribution at random with a fixed mean (or with
a given distribution of the mean) such that the probability
distribution is either discrete or continuous almost surely. The
algorithm is based on the notion of sequential barycentre array
that characterises a probability distribution. The nth row of the
barycentre array consists of 2n

+ 1 elements. Those elements
mn,k, k = 1, . . . , 2n

− 1, occupying even positions are replicated
from the previous row (mn,2j = mn−1,j) and those at odd positions
are conditional expectations (barycentres)

mn,2j−1 = E[X |mn−1,j−1 < X < mn−1,j].

Note that mn,0 = 0 and mn,2n = 1 for n ≥ 0, or, in general, are the
essential infimum and the essential supremum of the distribution.

Algorithm HM produces a random sequential barycentre array,
and thus yields a random cdf. The element m1,1 occupies the
middle position in each rowof the barycentre array and is themean
of the distribution, which can be fixed or simulated at the start of
the algorithm. Each barycentre in the nth row occupying an even
position is copied from the previous row, while the barycentres
occupying an odd position are sampled from an interval formed
by two adjacent barycentres from the (n − 1)st row. For this, one
takes independent copies of a random variable U distributed on
[0, 1) and calculatesmn,4j−1 asmn−1,2j−1 +U(mn−1,2j −mn−1,2j−1),
whilemn,4j−3 is calculated asmn−1,2j−1 −U(mn−1,2j−1 −mn−1,2j−2).
If U =

1
2 a.s., then all subsequent barycentres are taken to be the

midpoints of the corresponding intervals and if the first barycentre
is located at 1

2 , the resulting distribution is uniform; see Hill and
Monticino (1998, Example 3.3). The key issue is to choose the
distribution ofU which has full support in [0, 1), but allocatesmore
mass to themid-part of the unit interval. IfU is likely to take values
close to 0 or 1, they yield short intervals and the resulting random
cdf has nearly vertical parts resembling atoms. We use the HM
algorithm in our numerical examples.
Random distributions with arbitrary essential infimum and supre-
mum. Random probability distributions with prescribed essential
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