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a b s t r a c t

One possible way of risk management for an insurance company is to develop an early and appropriate
alarm system before the possible ruin. The ruin is defined through the status of the aggregate risk process,
which in turn is determined by premiumaccumulation aswell as claim settlement outgo for the insurance
company. The main purpose of this work is to design an effective alarm system, i.e. to define alarm
times and to recommend augmentation of capital of suitable magnitude at those points to reduce the
chance of ruin. To draw a fair measure of effectiveness of alarm system, comparison is drawn between
an alarm system, with capital being added at the sound of every alarm, and the corresponding system
without any alarm, but an equivalently higher initial capital. Analytical results are obtained in general
setup and this is backed up by simulated performances with various types of loss severity distributions.
This provides a strategy for suitably spreading out the capital and yet addressing survivability concerns at
factory level.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction and overview

This work develops an early and appropriate alarm system for
an insurance institution before its possible ruin based on pattern
of premium collection and demands for claim settlement. While
keeping a very high initial capital may avoid ruin for the insurance
company, it is neither desired by most companies because of
obvious investment concerns, nor is it feasible at times. An effective
alarm system opens the door to an alternate strategy based on ruin
theory by opting for less initial capital and topping it up when
really necessary.

Alarm systems have been developed in different contexts in the
literature (viz. Guillou et al., 2010, Lindgren, 1980 and Monteiro
et al., 2008 and references therein), while capital reserving or
capital allocation have been addressed inmany articles (viz. Besson
et al., 2009, Kaishev et al., 2007, and references therein). In
particular, Kaishev et al. (2007), showed numerically that two
capital accumulation functions, one linear and the other piecewise
linear with one jump at some instances, would lead to equal
chances of survival and also equal accumulated risk capital at
the end of the considered time interval. The approach in the
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present work, with the introduction of a new alarm system, is
fundamentally different even though the broad concern is similar,
i.e. to reduce the initial capital without compromising on the
survival probability.

The basic idea behind our proposednotion of alarm is as follows.
Alarm is sounded at a juncture when the probability of ruin (in the
absence of any intervention) within a specified future time period
is high. While few variations in defining the alarm time have been
explored inDas andKratz (2010),we find itmore appropriatewhen
the above probability is set in terms of conditional probability
of ruin given survival up to the alarm time. In addition, we
require that the probability of non-ruin before the alarm should
be sufficiently high. An alarm system consisting of a sequence of
alarms is defined following a natural extension of the single alarm
and with the addition of capital at the sound of each alarm. This
system constitutes an alternate strategy for having to put up an
excessive initial capital to avoid ruin.

Note that this strategy does not interferewith the Value-at-Risk
approach (or any tail approach) applied by insurance companies as
mandated by the Solvency regulation. It just means that the capital
may also be adjusted on a regular basis (e.g. every quarter) for
the risk adjusted capital to be higher than the capital required by
Solvency.

For a fair evaluation of the effectiveness of our strategy, the
proposed alarm system is pitted against a default no-alarm system
equipped with equivalent higher initial capital. We compare the
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survival probabilities under the alternatives. In the long run, the
alarm system is expected to perform better in terms of higher
survival probability over finite horizon, as is indeed confirmed
by our study. Consequently, the alarm system may be preferred
even if the chance of survival under this is marginally worse
in immediate future or very short horizon. With that being the
objective, we focus on analytical as well as numerical evaluation
of the comparative survival probabilities under the two systems.

To illustrate the formulation and methodology of our alarm
system, we consider a model as simple as possible, by taking
a linear accumulation model with i.i.d. claims. However our
method can be adapted to any structural changes in the model,
arising from realistic considerations like Solvency requirements,
dependent claims, changes of claim reserves, investment losses
and incomes. (For instance, the adjustment of capital as mandated
by Solvency rulesmight be easily accommodated in the setup using
a stepwise linear accumulation function.) While the alarm times
would changewith thesemodifications, themain principles would
remain the same. So we avoid complex model not to obscure the
basic idea unnecessarily.

Note also that if the stochastic nature of the risk process is
completely known, as is assumed in this work, the alarm times
are fixed known parameters, depending on various parameters of
the underlying risk process. In practice, the proposed mechanism
may be embedded into an adaptive scheme, where additional
information regarding the risk process in terms of claims would
be recursively/progressively utilized to lead to a suitable random
alarm system that draws on empirical information on claims.

The paper is organized as follows. Section 2.1 introduces the
basic notation and framework of the work. In Section 2.2, we
give the formal definition of alarm time, choose few examples
to cover the different types of severity distributions, discrete to
continuous, as well as light vs. heavy tail, and study the role of
various parameters in the definition of alarm times. Formalization
of multiple alarms leading to an alarm system is taken up in
Section 2.3. The next section, Section 3, develops a strategy to
alleviate initial capital using alarm systems. The effectiveness
of alarm systems and comparison across the different options
including that of not adopting any alarm system is discussed here.
The numerical demonstrations are provided in Section 3.1. General
analytical bounds are derived in Section 3.2, providing directions of
adaptability of the alarm system in specific real circumstances.

2. Alarm system based on probability of impending ruin

2.1. Framework

To present our approach, we consider the simple ruin theory
model, namely the Cramér Lundberg model, although much of
the analysis of this paper can be carried over in a straightforward
way to more general Lévy processes and premium rates. Most
of the definitions and results will be given in terms of ruin
probability since results on distributions of ruin time can be found
in the existing literature; see some key references in this decade,
e.g. Asmussen and Albrecher (2010), Dickson (2005), Embrechts
et al. (2001), Ignatov and Kaishev (2004, 2006), Kaishev and
Dimitrova (2006) and Mikosch (2004); in particular the finite
time survival probability is expressed for continuous and discrete
claims, respectively in Ignatov and Kaishev (2004, 2006). From
broad considerations, ruin time distributions depend on whether
the claims distributions are continuous or discrete, but also on
the characterization of the claims tail distributions; our choice of
examples will attempt to reflect that.

By default, we assume that the claim amounts (severity) Xi’s
are i.i.d. with distribution function F and mean µ, with i.i.d. inter-
arrival times Tk − Tk−1 exponentially distributed and independent

of the Xi’s. We will consider various different claim distributions
F . Set T0 = 0. The aggregated claims (Ss)s≥0 are defined by Ss =Ns

i=1 Xi, where Ns = sup{k ≥ 1 : Tk ≤ s} is a homogeneous
Poisson process with intensity λ > 0.

Consider the risk (or surplus) process (V us
s )s≥0 defined by

V us
s = us + ps − Ss = us − Rs, (1)

where us denotes the capital function at time s, the premium rate
is linear, viz. ps = cs, and the net outgo (without taking the capital
into account, i.e. aggregate claims less premium collected) is given
by Rs = Ss − ps. Note that while (Rs) is a stochastic process (a
compound Poisson process in our setting), the capital process (us)
is non-randomand at the discretion of the company. One of the key
objectives of this work may be restated as the determination of us
given the knowledge of parameters of Rs.

The ruin time of such a risk process is then formally defined as:

T = inf{s > 0 : V us
s < 0} = inf{s > 0 : Rs > us}, (2)

with T = ∞ if there is no ruin. Note that while in practice onemay
wish to define ruin as the first time instance when V us

s goes below
a level L (other than 0), it would take only a trivial adjustment in
the approach adopted here. Consequently, in this work, we stick to
L = 0.

Of special interest is starting with an initial capital u0 = u and
not making any further addition, i.e. us = u for all s ≥ 0; it will be
our benchmark or starting framework. The ruin time in such a case
will be denoted by T (u), i.e.

T (u) = inf{s > 0 : V u
s < 0} = inf{s > 0 : Rs > u}. (3)

Note that while flexibility in the choice of the initial capital u is
an integral part of this work, in a given instance we are concerned
with a fixed value for u andwill not be interested in the asymptotic
behavior as u → ∞, unlike most related literature.

At times, we are interested in the behavior of the surplus
process only after a given time a ≥ 0, with constant capital
function beyond this time,us = u,∀s ≥ a; in such a case, let T (a, u)
denote the ruin time defined by

T (a, u) = inf{s > a : V u
s < 0} = inf{s > a : Rs > u}.

In particular, T (u) ≡ T (0, u).
The infinite horizon ruin probability with capital u at time a is

denoted by:

ψa(u) := P[T (a, u) < ∞] = P[inf
s>a

V u
s < 0] = P[sup

s>a
Rs > u].

The corresponding finite horizon ruin probability, which is the
distribution function of the r.v. T (a, u), is given by

ψa(u, t) := P[T (a, u) ≤ t] = P[ sup
a<s≤t

Rs > u].

To simplify the notation, we set

ψ0(u) = ψ(u); ψ0(u, t) = ψ(u, t); and
ψ̄a(u, t) = 1 − ψa(u, t).

Let us introduce the conditional ruin probabilities in infinite and
finite times given some event B:

ψa(u | B) := P[T (a, u) < ∞ | B]
= P[inf

s>a
V u
s < 0 | B]

= P[sup
s>a

Rs > u | B],

and

ψa(u, t | B) := P(T (a, u) ∈ (0, t] | B) = P[ sup
a≤s≤t

Rs > u | B].
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