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a b s t r a c t

Convenient expressions for the Esscher pricing functional in the context of the compound Poisson
processes with dependent loss amounts and loss inter-arrival times are developed. To this end, the
moment generating function of the aforementioned dependent processes is derived and studied. Various
implications of the dependence are discussed and exemplified numerically.
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1. Introduction

Let X denote a set of actuarial losses, and assume that these
losses are represented by non-negative random variables (r.v.’s),
say X ∋ X : Ω → [0, ∞) := R0,+, defined on the same prob-
ability space (Ω, F , P). (We note in passing, that the r.v. X must
not generally be a scalar-valued one.) In addition, let π : X →

[0, ∞] := R0,+ denote a pricing functional, assigning a monetary
equivalence to each X in X.

Numerous studies involving pricing functionals π are available
in the literature. In this respect, properties of relevant objects
have been studied and new ones have been proposed in,
e.g., distribution theory (see, e.g.,Furman and Landsman, 2010;
Constantinescu et al., 2011 and Yang et al., 2011, and references
therein) and pricing theory (see, e.g., Young, 2004, for a review,
andWang, 1996; Furman and Zitikis, 2009, and references therein),
among others. Intersections are also available (see, e.g., Furman
and Landsman, 2006; Vernic, 2010 and Albrecher et al., 2011, and
references therein).

However, a more intricate problem of pricing a stochastic pro-
cess Xt : Ω → R0,+, with t ∈ T ⊆ R0,+, is seemingly somewhat
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less well-studied, even though in essence actuaries face Xt rather
than X in their practice. In view of the above, in this note we are
concerned with a collection of stochastic processes XT and a pric-
ing functional Π : XT → R0,+, with Π[Xt ] denoting the price for
Xt ∈ XT .

Motivated by the classic collective risk theory (see, Bühlmann,
1970), in the sequel we are interested in the processes of the
form

Xt := Y1 + Y2 + · · · + YNt =

Nt
n=1

Yn, for Nt > 0, (1.1)

where, for a sequence of loss occurrence times {Tn}n≥1, we denote
by Nt := sup{n ∈ N : Tn ≤ t ∈ T }(N0 = 0) a usual renewal
process, and by {Yn}n≥1, a sequence of the corresponding loss
amounts. Also, we let {Wn}n≥1 be a sequence of loss inter-arrival
times, with Wn := Tn − Tn−1, n ≥ 2, and W1 := T1.

The process Xt is of prime applied importance, and it
quantitatively describes the aggregate loss, an insurer incurs
during the period [0, t], with t ∈ T being generally known.
We note in passing, that in practice, a non-zero discounting of
{Yn}n≥1 may be desirable, and it can indeed be introduced into
(1.1), making this non-trivial object even less tractable. However,
in themajor part of this note,we shall assume that the inflation and
interest rates are equal, and thus random sum (1.1) is satisfactory.
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Inconveniently, explicit formulas are seldom derivable when
tackling pricing functionals Π (see, Asmussen and Albrecher,
2010). An important and tractable practical case occurs when the
loss inter-arrival times are identically exponentially distributed as
W v Exp(λ). In such a case, which is also the one of interest in this
work, we readily have that Nt v Poisson(λt), i.e., the number of
losses in the interval [0, t] is distributed Poisson with mean λt .

Furthermore, the aforementioned exponentiality of the loss
inter-arrival times is not the only assumption being imposed on
(1.1) in an attempt to increase its tractability. The seemingly
most restrictive simplification in this respect, is the one requiring
independence of the loss amounts and loss inter-arrival times.
In this note we allow for a pairwise dependence between the
sequences {Wn}n≥1 and {Yn}n≥1, and we demonstrate that the
resulting dependent compound Poisson process remains to an
extent analytically convenient. Our main result is formulated and
proved in Section 2, and it is then applied to the Esscher-based
pricing in Section 3. The problem of non-zero discounting in
the framework of the dependent compound Poisson processes is
discussed in Section 4, which concludes the paper.

2. Dependent compound Poisson processes and their moment
generating function

In this section, we explore the moment generating function
(m.g.f.) of random sums (1.1). To this end, the following
assumptions are imposed, and they hold throughout, if it is not
stated otherwise:

A. the inter-arrival times {Wn}n≥1 are independent and identically
distributed (i.i.d.) as a canonical r.v.W ,

B. the aforementioned r.v. W is exponentially distributed with
mean E[W ] = 1/λ,

C. the loss amounts {Yn}n≥1 are i.i.d. having the cumulative
distribution function (c.d.f.) F and probability density function
(p.d.f.) f onR0,+, and such that the correspondingm.g.f. is finite,
i.e.,M(h) := E[ehY ] < ∞, for h ∈ H ⊆ R, and

D. the sequence {Wn, Yn}n≥1 consists of mutually independent
bivariate r.v.’s (W , Y ), with the dependence structure between
W and Y being described by the Farlie–Gumbel–Morgenstern
(FGM) copula having the c.d.f.

Cθ (u, v) := uv + θuv(1 − u)(1 − v), for −1 ≤ θ ≤ 1, (2.1)

and for (u × v) ∈ [0, 1] × [0, 1] (see., e.g., Nelsen, 2006 and
Cossette et al., 2010).

Note 2.1. In the sequel to distinguish between dependent and
independent compound Poisson processes, we index the former
ones with θ and thus write Xt,θ , reserving the Xt notation for the
classic independent case.

In short, assumptions A and B readily yield Nt v Poisson(λt),
assumption C is required because we are interested in the Esscher
pricing functional, and assumption D conveniently implies the
FGM copula-based dependence between the loss amounts and loss
inter-arrival times (see, Nelsen, 2006).

More specifically, for the random pair (W , Y ), having the c.d.f.
Cθ , Spearman’s rho and Kendall’s tau are given by θ/3 and 2θ/9,
respectively. Furthermore, Pearsons’ correlation is not surprisingly
dependent on themarginal distributions ofW and Y , and it is given
by

Corr[W , Y ] = θ


∞

0
FW (x)(1 − FW (x))dx

×


∞

0
FY (x)(1 − FY (x))dx

(see, e.g., Mari and Kotz, 2001). Thus FGM copulas allow for both
negative and positive dependences between the loss amounts and
loss inter-arrival times. In addition, FGM copulas are first-order
approximations to Ali–Mikhail–Haq, Frank and Placket copulas
(see, Hutchinson and Lai, 1990 and Mari and Kotz, 2001, and
references therein for additional properties).WedepictCθ (u, v) for
various dependence levels in Fig. 1.

In the sequel, wemake extensive use of the following definition
(see, e.g., Furman and Zitikis, 2009, and references therein).

Definition 2.1. The random variable Yw v Fw , such that

Fw(y) :=
E[1{Y ≤ y}w(Y )]

E[w(Y )]
, y ∈ R,

where 0 < E[w(Y )] < ∞, is called the weighted variant of Y v F
with the weight function w : R → R+.

Using Definition 2.1 and assumption D, we readily observe that
the p.d.f. of (W , Y ) is conveniently written as

fW ,Y (w, y)

= λe−λwf (y) + θ(f (y) − fw(y))(2λe−2λw
− λe−λw), (2.2)

where fw is the p.d.f. of the weighted counterpart of Y with the
weight function w(y) = 2F(y) (note that E[2F(Y )] = 1).

Curiously, certain differences involving f (y) and fw(y) are of
certain importance when analyzing the implications of our main
result. Therefore, we find the following simple proposition useful.

Proposition 2.1. Let Y v F and Yw v Fw , with w(y) = 2F(y). Then

Mw(h) := E[ehYw ] ≥ M(h), (2.3)

for all h ∈ H ⊆ R, such that the m.g.f.’s above exist.

Proof. Directly by definition
∞

0
ehydFw(y) =


∞

0

∞
k=0

(hy)k

k!
dFw(y) =

∞
k=0

hk

k!
E[Y k

w]

=

∞
k=0

hk

k!
E[Y k2F(Y )]

≥

∞
k=0

hk

k!
E[Y k

] =

∞
k=0

hk

k!


∞

0
ykdF(y)

=


∞

0
ehydF(y),

with the inequality due to the fact that, for k ∈ N, we have that Y k

and 2F(Y ) are positive quadrant dependent (PQD) (see, Lehmann,
1966), and thus we have that

E[Y k(2F(Y ))] ≥ E[Y k
]E[(2F(Y ))] = E[Y k

],

which justifies the inequality and thus concludes the proof. �

In what follows we denote by H∗(p) the Laplace transform of
H(x), for x ≥ 0. Namely, we have that

H∗(p) := (LH)(x) =


∞

0
e−pxH(x)dx.

The following theorem establishes the m.g.f. of the dependent
compound Poisson process.

Theorem 2.1. Let Xt,θ be a dependent compound Poisson process as
described by assumptions A–D. Then its moment generating function
is formulated as

MXt,θ (h)

=
(2λ + p1,λ,θ (h))ep1,λ,θ (h) t

− (2λ + p2,λ,θ (h))ep2,λ,θ (h) t

p1,λ,θ (h) − p2,λ,θ (h)
, (2.4)
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