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• We develop general technique of the roots to the Lundberg’s equation for dual models.
• An explicit form of the Laplace transform of the time of ruin is obtained.
• The expected dividends of the dual model under the threshold strategy are obtained.
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a b s t r a c t

In this paper, we study the Sparre-Andersen dual risk model in which the times between positive gains
are independently and identically distributed and have a generalized Erlang-n distribution. An important
difference between this model and some other models such as the Erlang-n dual risk model is that the
roots to the generalized Lundberg’s equation are not necessarily distinct. Hence, we derive an explicit
expression for the Laplace transform of the ruin time, which involves multiple roots. Also, we apply
our approach for obtaining the expected discounted dividends when the threshold-dividend strategy
discussed by Ng (2009) is implemented under the Sparre-Andersen model with Erlang-n distribution of
the inter-event times. In particular, we derive an explicit form of the expected discounted dividendswhen
jump sizes are exponential.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The dual ruin model is defined as

R(t) = u − ct + S(t), t ≥ 0, (1.1)

where u > 0 represents the initial capital, c > 0 is the con-
stant expense rate and {S(t) : t ≥ 0} is the aggregate revenue
from time 0 up to time t . This kind of models is widely used in
modeling the surplus processes of companies with continuous ex-
pense but occasional income due to contingent events (see Avanzi
et al., 2007; Ng, 2009; Landriault and Sendova, 2011). One particu-
lar case of (1.1) is the compound Poisson dual risk model, which
is studied thoroughly in many other papers, including the divi-
dend payment problem with barrier (see Avanzi et al., 2007) or
threshold strategy (see Ng, 2009) and the tax payment problem
(see Albrecher et al., 2008). Besides, Landriault and Sendova (2011)
generalize the Sparre Andersen dual risk model with Erlang-n
inter-innovation times by adding a budget-restriction strategy. Re-
cently, in Rodríguez et al. (2013), an explicit form of the Laplace
transform of the ruin time under the Erlang-n dual risk model is
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provided. In this paper, we are mainly interested in the explicit
form of the Laplace transform of the time to ruin under the Sparre-
Andersen dual model with generalized Erlang-n inter-innovation
times. As shown in Ji and Zhang (2012), under the Erlang-n dual
risk model, the roots to the Lundberg’s equation are distinct. How-
ever, under the generalized Erlang-n dual riskmodel, this is not the
case any longer (see Example 5.2). Instead, the multiplicity of the
roots should be considered when we derive an explicit form of the
Laplace transform of the ruin time.

The contents of this article are organized as follows: Section 2
introduces the notation andmodel settings. In Section 3, we derive
a homogeneous integro-differential equation for an auxiliary
quantity related to the Laplace transform of the ruin time. In
Section 4, we discuss the number of roots of Lundberg’s equation
with positive real part in order to find the general solution of
the integro-differential equation deduced in Section 3. Section 5
provides the explicit expression of the Laplace transform of the
time to ruin. In Section 6, we apply similar arguments for analyzing
the threshold-dividend-strategy problem and obtain the explicit
form of the expected discounted dividends under the dual risk
model with exponential jumps.

2. Notation and model settings

Let the independently and identically distributed (i.i.d.) posi-
tive random variables {Y1, Y2, . . .} represent the amounts of the
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occasional revenue and denote their common cumulative distri-
bution function (c.d.f.) by P(y), y ≥ 0, with P(0) = 0, their prob-
ability density function (p.d.f.) by p(y) = P ′(y), y ≥ 0, and their
Laplace transform by p̃(s) =


∞

0 e−sydP(y), s ≥ 0. In (1.1), the re-
newal process {S(t) : t ≥ 0} with i.i.d. inter-event times {Vi}

∞

i=1 is
constructed as

S(t) =

N(t)
i=1

Yi,

where N(t) = max{k ∈ N : V1 + V2 + · · · + Vk ≤ t} is the
number of gains from time 0 up to time t . By convention, S(t) = 0
whenever N(t) = 0. In this paper, we assume that the inter-event
times Vj, j = 1, 2, . . . , (we may also call them inter-innovation
times) have a generalized Erlang-n distribution with parameters
λ1, λ2, . . . , λn > 0, i.e. V1, in particular, may be expressed as

V1
d
=

n
j=1

Wj,

where Wj is an exponential random variable with mean 1/λj, j =

1, 2, . . . , n. Hence, if we denote the probability distribution func-
tion of V1 by f (t), t ≥ 0, then the corresponding Laplace transform
of f (t) has the form

f̃ (s) =


∞

0
e−st f (t)dt =

n
j=1

λj

λj + s
, Re(s) ≥ 0. (2.1)

Furthermore, if we define by fc(t) the p.d.f. of the random variable
cV1, then fc(t) =

1
c f (t/c) and hence by the change of scale prop-

erty of the Laplace transform, we have

f̃c(s) = f̃ (cs) =

n
j=1

λj

λj + cs
, Re(s) ≥ 0. (2.2)

Now define auxiliary function

gc(t) = e−δt/c fc(t) (2.3)

then by the first translation property of the Laplace transform

g̃c(s) = f̃c


s +

δ

c


=

n
j=1

λj

λj + cs + δ
, Re(s) ≥ 0. (2.4)

Since the dual model describes the surplus process of some kind of
business which we do not want to bankrupt with probability 1, we
require the so-called net-profit condition, namely,

cE[V1] < E[Y1]

as one of the basic assumptions for ourmodel. The net-profit condi-
tion is one of the basic assumptions in many articles related to the
dualmodel such as Avanzi et al. (2007) and Landriault and Sendova
(2011). Furthermore, in Section 4, the net-profit condition plays an
important role in determining the number of roots with positive
real part to the generalized Lundberg’s equation when there is a
simple root on the boundary.

Since the expectation of V1 is

E[V1] =

n
j=1

E[Wj] =

n
j=1

1
λj
,

if we denote by µ = E[Y1], the net-profit condition becomes
n

j=1

1
λj
<
µ

c
. (2.5)

Now define the ruin time T := inf{t ≥ 0 : R(t) = 0} and the ruin
probability with given initial capital u

ϕ0(u) = E[I(T < ∞)|R(0) = u], u > 0,

where I(E) is the indicator function of an event E. Then

ϕ0(u) < 1

for all u > 0 only if the net-profit condition (2.5) holds. More gen-
erally, the Laplace transform of the ruin time, given initial capital
u, is defined as

ϕδ(u) = E

e−δT I(T < ∞)|R(0) = u


, u > 0.

Our goal is to find an explicit formofϕδ(u)by solving an integro-
differential equation.

In addition, we introduce the Fourier transform of ϕδ(u)

ϕ̂δ(ξ) =
1

√
2π


∞

−∞

ϕδ(u)e−ıξu du, ξ ∈ R,

where ı =
√

−1.

3. An integro-differential equation

In most literature related to ruin theory, the Laplace transform
of the ruin time satisfies some integro-differential equation de-
rived by conditioning on the amount and the time of the first inno-
vation. We apply this approach here too. Namely,

ϕδ(u) =

 u/c

0
e−δt


∞

0
ϕδ(u − ct + y) dP(y)


f (t) dt

+


∞

u/c
e−δ u

c f (t) dt.

With v = u − ct the above equation becomes

ϕδ(u) =
1
c

 u

0
e−δ u−v

c


∞

0
ϕδ(v + y) dP(y)


f

u − v

c


dv

+ e−δ u
c F
u
c


=

 u

0


∞

0
ϕδ(v + y) dP(y)


gc(u − v) dv + e−δ u

c F
u
c


,

where F(t) is the tail distribution of the density function f (t).
Hence, ϕδ(u) satisfies a convolution-type integro-differential
equation of the form

ζ (u) =

 u

0
I [ζ ] (v)gc(u − v) dv + G(u) (3.1)

withG(t) = e−δt/cF(t/c) and operator I : C(0,∞) → C(0,∞) defined
as

I [ζ ] (u) =


∞

0
ζ (u + y) dP(y).

For integro-differential equation (3.1), we have the following the-
orem for a particular class of functions G(u).

Theorem 3.1. For a function

G(u) ∈


h ∈ Cn

(0,∞) :


n

j=1


λj + δ + c

d
du


h(u) = 0


, (3.2)

if ζ (u) satisfies (3.1), then ζ (u) also satisfies the homogeneous
integro-differential equation

n
j=1


λj + δ + c

d
du


ζ (u) =


n

j=1

λj


I [ζ ] (u),

u > 0, (3.3)

with boundary conditions ζ (i)(0) = G(i)(0) for i = 0, 1, . . . , n − 1.
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