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a b s t r a c t

This paper considers a Markov-modulated jump-diffusion risk model with randomized observation
periods and threshold dividend. A second order integro-differential systemof equations that characterizes
the expected discounted dividend payments is obtained. As a closed-form solution does not exist, a
numerical procedure based on the sinc function approximation through a collocationmethod is proposed.
Finally, an example illustrating the procedure is presented.
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1. Introduction

Dividend strategies for an insurance risk model were first pro-
posed by De Finetti (1957) to model in a more realistic way an in-
surer’s surplus. From then on, the barrier and threshold dividend
strategies have been studied for a variety of insurance risk model,
for example Asmussen and Taskar (1997), Cai et al. (2006), Dick-
son and Waters (2004), Lin et al. (2003). The above continuous-
time models of the surplus process need continuous observation
of the surplus process, which cannot be realized in practice. Al-
brecher et al. (2011a) proposed a compound Poisson model with
stochastic observation periods and constant dividend barrier, and
presented some result on the distribution of dividend payment un-
til ruin. The idea of randomized observation periodsmeans the risk
process can be ‘‘looked’’ only at random times (called observation
times), which has been proposed and discussed by Albrecher et al.
(2013, 2011a,b). The riskmodelwith stochastic observations is still
a continuous-timemodel for the surplus, but to assume that obser-
vations are only possible at discrete points in time. It is a computa-
tional bridge between the continuous-time and the discrete-time
collective risk models that still enables explicit expressions.
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The Markov-modulated risk model was proposed by Asmussen
(1989), in which the ruin probability was studied. The model is
also called Markovian regime switching model in the finance and
the actuarial science literature. This model can capture the feature
that insurance policies may need to change if economical or po-
litical environment changes. Recently, there have been resurgent
interests of using regime switching models in the finance and ac-
tuarial science; see Avanzi et al. (2012), Diko and Usábel (2011),
Ng and Yang (2006). In this paper, motivated by the study of Al-
brecher et al. (2011a) and Asmussen (1989) we investigate some
corresponding results in a Markov-modulated jump-diffusion risk
model with randomized observation periods and threshold divi-
dend strategies.

Let {Jt}t≥0 be a homogeneous continuous-time Markov chain
taking values in a finite set M = {1, 2, . . . , d} with generatorΛ =

(λij). Λ is assumed to be irreducible with stationary distribution
π = (π1, π2, . . . πd). We identify the state space of the chain
as a finite set of unit vectors E := {e1, e2, . . . , ed} without loss
of generality, where ei ∈ Rd and the jth component of ei is the
Kronecker delta δij, for each i, j = 1, 2, . . . , d. The set E is called
the canonical state space of the chain.

The risk process {R(t)}t≥0 is given by

R(t) = x +

d
i=1

 t

0
I{Js=ei}dRi(s), t ≥ 0, (1)

where x = R(0) ≥ 0 is the initial surplus level, I{.} denotes the indi-
cator function and {R1(t)}, {R2(t)}, . . . , {Rd(t)} are d independent
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risk processes defined as follows,

Ri(t) = x
 t

0
eri(t−s)ds + ci

 t

0
e(t−s)rids + σi

 t

0
e(t−s)ridW (s)

−

Ni(t)
k=1

e(t−
k

j=1 Sij )riY i
k, (2)

where ci is the constant premium income rate and σi is the con-
stant volatility. {W (t)} is a standard Brownian motion. {Ni(t)} is
a homogeneous Poisson process with rate βi defined as Ni(t) =

sup{k : S i1 + S i2 + · · · + S ik ≤ t}, where S ik, k = 1, 2, . . . are the i.i.d
inter-times of Ri(t) with exponential distribution. The claim sizes
{Y i

n, n = 1, 2, . . .} are independent and identically distributed as
a generic continuous random variable (r.v.) with c.d.f. F i

Y (.), p.d.f.
f iY (.) and meanµi. ri > 0 is the constant force of interest. From the
above, the condition of having a positive expected profit is

d
i=1

πi(ci − βiµi) > 0.

Let {Zk}+∞

k=1 denote the observation times and Z−1 be the last
observation time before Z0 = 0. If time 0 is an observation point,
Z−1 = Z0 = 0. Let Tk = Zk − Zk−1(k = 1, 2, . . .) be the
kth time interval between observations, and assume that {Tk}+∞

k=1
is an i.i.d sequence distributed as a r.v. T , which has a common
exponential distribution with parameter γ . In addition, {Y i

k, k =

1, 2, . . . , i = 1, . . . , d}, {Ni(t), i = 1, 2, . . . , d}, {W (t), t ≥

0}, {Zk, i = 1, 2, . . .} and {Jt , t ≥ 0} are all independent. At
the observation times {Zk, k = 1, 2, . . .}, if the current surplus
level R(Zk) = x exceeds the barrier level b, dividends will be paid
continuously at a constant rate α(0 < α ≤ c) during the k + 1th
time interval between observations. If 0 ≤ R(Zk) = x ≤ b,
no dividends are paid during the k + 1th time interval between
observations. And the process will be declared ruined if R(Zk) =

x ≤ 0. In particular that ruin can now only be observed at these
random observation times and so a surplus level below 0 between
observation pointswill only result in actual ruin if it is also negative
at the next observation time.With the above-defined dividend rule
with barrier b, denote the sequence of surplus levels at the time
points {Zk}+∞

k=1 by {Ub(k)}+∞

k=1 . If time 0 is not an observation time,
we assume paying dividends continuously at rate α or not depends
on the value of Ub(−1) which is the value of surplus at the last
observation time before time 0 and provides the latest information
of the surplus process. For the case of Ub(−1) > b, dividends are
paid continuously at rate α between time Z0 and time Z1, while if
0 ≤ Ub(−1) ≤ b, no dividend is paid between time Z0 and time Z1.

Let c = (c1, c2, . . . , cd), σ = (σ1, σ2, . . . , σd), and r =

(r1, r2, . . . , rd). Define c(t) = ⟨c, Jt⟩, σ(t) = ⟨σ , Jt⟩ and r(t) =

⟨r, Jt⟩. Where ⟨, ⟩ is the scalar product in Rd. Denote S i(t) =Ni(t)
k=1 Y i

k. With the initial surplus level Ub(0) = x, x ∈ R, we then
have the relationship (Eqs. (3) and (4) is given in Box I).

The time of ruin is defined by τb = Zkb , where kb = inf {k ≥ 0 :

Ub(k) < 0} is the number of observation intervals before ruin. Let
∆δ(x; b) be the cumulative amount of dividend paid out up to time
τb for a discounted rate δ ≥ 0, then

∆δ(x; b) =



kb−1
k=1

αe−δZk I{Ub(k)>b} · āTk+1|δ
+ αāT1|δ,

x = Ub(0) ∈ R,Ub(−1) > b,
kb−1
k=1

αe−δZk I{Ub(k)>b} · āTk+1|δ
,

x = Ub(0) ∈ R,Ub(−1) ≤ b,

(5)

where āt̄|δ is the present value of a continuous annuity, āt̄|δ =

1−e−δt
δ

and I{.} is the indicator function.
We study the expected discounted dividend payments until

ruin for the discounted rate δ ≥ 0. Let Pi(.) = P(.|J0 = i). Since the
conditioning technique exploits the removal of the time stamp, we
will need to consider the definition (5) ∆δ for all x ∈ R, where
now time 0 is a priori not an observation time. It is easy to see
that ∆δ(x; b) behaves differently with different values of Ub(−1).
Hence, we set two functions V1,i(x; b) and V2,i(x; b) to denote the
conditional expectations of∆δ(x; b) under Pi with different values
of Ub(−1), that are
V1,i(x; b) = Ei[∆δ(x; b)|Ub(0) = x,Ub(−1) > b],
V2,i(x; b) = Ei[∆δ(x; b)|Ub(0) = x, 0 ≤ Ub(−1) ≤ b], (6)

which are the main quantities of interest in this paper.
In the Markov-modulated model, we obtain a second order

integro-differential system of equations that characterizes the
function of the expected discounted dividend payments. The
closed-form solution of the integro-differential equation system
does not exist; a numerical procedure based on the sinc function
through a collocation method is proposed. The sinc method is a
highly efficient numerical method developed by Frank Stenger, the
pioneer of this field, people in his school and others (Stenger, 1993;
Lund and Bowers, 1991; Stenger, 1976, 2000, 2011). It has been
widely used in various fields of numerical analysis such as inter-
polation, quadrature, approximation of transforms, solution of in-
tegral, and ordinary differential and partial differential equations.
In Chen and Ou (2013) the sinc method was proposed for a Fred-
holm–Volterra integro-differential equation to calculate the value
of the expected discounted dividend function in a compound Pois-
son risk model with proportional investment. The authors approx-
imated the expected discounted dividend function over (0,∞)
having algebraic decay for large and small values of the argu-
ment. In this work, the sinc-collocation method is developed for
solving the linear system of integro-differential equations of Fred-
holm–Volterra type.Weapproximate the expecteddiscounteddiv-
idend functions over (−∞,+∞) having algebraic decay at ±∞.
As an example illustrating the sinc procedure, we study the effect
of randomized observation times and environment states on the
total discounted dividend payments until ruin.

We organize our paper as follows. In Section 2, the integro-
differential system that characterizes the expected discounted
dividend payments is derived. In Section 3, a numerical method
to approximate the solution of the system via the sinc-collocation
method is considered. In Section 4 we give a numerical example to
illustrate the impacts of the economical or political environment
on the expected discounted dividend payments. The final section
concludes the paper.

2. Integro-differential system for the expected discounted
dividend payments

In this section, we derive the integro-differential system of
equations satisfied by {Vk,i(x; b), i = 1, 2, . . . , d, k = 1, 2}.

Theorem 1. {Vk,i(x; b), i = 1, 2, . . . , d, k = 1, 2} satisfy the
following system of integro-differential equations:

1
2
σ 2
i V

′′

1,i(x; b)+ (rix + ci − α)V ′

1,i(x; b)

− (δ + βi + γ I{x≤b} − λii)V1,i(x; b)

+


j≠i

λijV1,j(x; b)+ γ I{0≤x≤b}V2,i(x; b)

+βi


∞

0
V1,i(x − y; b)f iY (y)dy + α = 0, (7)
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