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We consider a model which allows data-driven threshold selection in extreme value analysis. A mixture
exponential distribution is employed as the thin-tailed distribution in view of the special structure of
insurance claims, where individuals are often grouped into categories. An EM algorithm-based procedure
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1. Introduction

The peaks-over-threshold (POT) method is frequently used to
model extreme data. For a sufficiently high threshold u and under
some regularity conditions, Pickands (1975) showed that, if the
maxima of a continuous random variable X, suitably normalized,
converges to a non-degenerate distribution, then the conditional
distribution of X given X > u converges asymptotically to the
generalized Pareto distribution (GPD) with distribution function
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with support (u, co) if y > 0and (u, u — %) otherwise. Here y is
the shape parameter or extreme value index while ¢ > 0 is the
scale parameter. Traditional POT model fitting involves selecting a

suitable u, perhaps using the mean residual life plot which charts
the mean excesses over different candidate values i against i
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themselves as illustrated by, for example, Coles (2001). Then G,
is fitted to the k exceedances over u. However, one drawback
of this method is that there is no universal way of determining
u, and in practice different choices of u will often result in very
different parameter estimates and inferences. Wong and Li (2010)
proposed a model in which the full data set is assumed to follow
the distribution

P(x; 6),

x<u,
F 0.y, 0) = {P(u; 0) + (1— P(u; 0)Gu(x: . 0).

X>1u

(1)

where P(-) is the distribution function specified by the user with
parameters 6. A simple application of the model is to set P to be
exponential, so that P(x; 1) = 1 —e~** and the density function of
(1) becomes

)\e—kx
e Mg (x; v, 0),

where g, is the density function of the GPD. In essence, the portion
of observations below u is fitted with the exponential distribution
and for the part above u we fit it with the GPD. For a random
sample {xq, ..., x,} with ordered values x(;) < --- < X, finding
the estimate of u, denoted by ii, can be done by the maximum
likelihood (ML) method, where the likelihood function

xX=u,
X>u

f(X; A, ')/,O') = { (2)

n
LA, y,0:x) = Hf(xi; Ay,0)
i=1
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Fig. 1. Plots of exponential densities with rates 1 and 5 (Dashed) and mixture exponential density with component rates 1 and 5 (Solid). A log y-axis is used in the plot on

the right.

or log-likelihood function logL is maximized for each value of
U = X@m—k. In practice we can restrict the number of threshold
exceedances k to be at most |n/4]. The value i together with
its corresponding parameters that give the largest maximized
likelihood value will be chosen, and the ML estimate is given by
@, x,7,6).

The main advantage of such modeling is that the estimation of
u is data-driven. Wong and Li (2010) chose the Secura Belgian Re
automobile claims data for demonstration, in which a satisfactory
result was obtained when P takes the exponential form.

However, despite its elegance and simplicity, the exponential
distribution does not offer much flexibility and its shape is
rather limited. Consider the mixture exponential distribution as a
generalization of the exponential distribution. A random variable
Y has a mixture exponential distribution or hyperexponential
distribution with m stages when Y = X; with probability p; for
i=1,..., msuchthatthe p;'s are positive and sum to one, and that
each X; follows an exponential distribution with rate parameter A;.
The density function of Y is given by fy (y) = Y 1" | pirie .

In the context of insurance, individuals are often grouped
according to certain characteristics. For instance, in life insurance
applicants are often classified according to their age and disease
history, while in automobile insurance the classification criteria
may be accident history. Such categorization is crucial as the
claim distributions of individuals falling into various subgroups
can be vastly different, which in turn affects pricing. If we
assume that individual claim amounts in a particular group follow
the exponential distribution, for example claim amounts from
diseased and healthy individuals are exponentially distributed
with respective means 1/A; and 1/, with A; < X, and that each
claim can be from group i with probability p;, then we arrive
at the mixture exponential distribution when we consider the
overall claim amount distribution. Recently, Lee and Lin (2010) also
employed mixture distributions in modeling which caters for the
nature of insurance losses. It is often the case that we are interested
in the overall claim distribution, and in particular we consider
extremes that may affect the financial stability of the insurer
regardless of which category such a massive claim comes from.
Hence a GPD fitted to the tail will summarize such information in
terms of tail properties expressed by the extreme value index y.

Mixture exponential distribution is also widely used in basic
ruin theory, in which we are interested in the probability of ruin
¥ (v) given initial surplus v in the surplus process

Ut)=v+ct—-S(t), t>0

with aggregate claims up to time t, S(t), being a compound
Poisson process. When the claim amount is distributed as mixture

exponential, there exists an explicit expression for ¢ (v) (Dufresne
and Gerber, 1988; Gerber et al., 1987). Due to the introduction
of the GPD component, there may not exist a closed form for
¥ (v), but we can still investigate numerically how this will change
compared to the mixture exponential case.

Even when the claim distribution itself does not have a
direct relation for subgroup partition, the mixture exponential
distribution provides better control on the degree of curvature of
the density function that will allow more flexible fitting. Fig. 1
shows the plots of two exponential densities and a mixture
exponential density. The left panel shows both axes in the original
scale while the right panel uses a logarithmic scale on the y-
axis. It can be seen that each exponential density approximates
a particular part of the mixture exponential distribution to some
degree, but fails to model the rest of it. Meanwhile, the mixture
exponential is a generalization of the exponential distribution, as
we can simply set the mixture components to be the same in order
toretrieve the latter. We will also see in Section 2 that, if we employ
the EM algorithm in likelihood maximization, there exist closed-
form solutions for the parameter estimates in each iteration for
any proposed threshold, so that computational efficiency can be
improved.

In this paper we attempt to use a mixture exponential distri-
bution as the thin-tailed distribution P, and explore the flexibility
it provides. Section 2 presents our model and fitting procedures
using the EM algorithm. A simulation study is provided in Sec-
tion 3, while in Section 4 two real data sets are fitted and further
comments are given. Section 5 is devoted to a likelihood ratio test
statistic based on which we test the justification of P being a mix-
ture exponential against a homogeneous exponential distribution,
where the test is also applied on the two real data sets. Concluding
remarks are given in Section 6.

2. Model formulation and parameter estimation

In applying the mixture exponential distribution to P(-) in the
threshold model (1), we consider the case where m = 2. The gen-
eralization is straightforward when m > 2, but as we will address
in Section 4, a further increase in the number of components will
not offer much improvement to justify the additional time spent in
modeling. With this specification, the density function of the model
is
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