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• In this paper we propose a credibility theory via truncation of the loss data.
• The proposed framework contains the classical credibility theory as a special case.
• It is shown that the trimmed mean is not a coherent risk measure.
• Some related asymptotic properties are established.
• A numerical illustration is provided.
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a b s t r a c t

The classical credibility theory proposed by Bühlmann has been widely used in general insurance ap-
plications. In this paper we propose a credibility theory via truncation of the loss data, or the trimmed
mean. The proposed framework contains the classical credibility theory as a special case and is based
on the idea of varying the trimming threshold level to investigate the sensitivity of the credibility pre-
mium. After showing that the trimmedmean is not a coherent risk measure, we investigate some related
asymptotic properties of the structural parameters in credibility. Later a numerical illustration shows that
the proposed credibility models can successfully capture the tail risk of the underlying loss model, thus
providing a better landscape of the overall risk that insurers assume.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Credibility theory allows actuaries to estimate the conditional
mean loss for a given risk to establish an adequate premium to
cover the insured’s loss. The theory of experience-based credibility
constitutes the backbone in general insurance ratemaking. Let us
consider such loss random variables (rv) X1, . . . , Xn and X from a
common distribution function (df) F(x; θ) with θ representing the
risk level of the insured. The losses are assumed to be independent
and identically distributed conditional onΘ = θ , meaning that the
risk parameter itself is a rv,1 and X = (X1, . . . , Xn) typically stand
for past experience,whereas X is the loss for the next period. Under
this setup the ideal individual premium, or the hypothetical mean,
for an insured with θ is simplyµ(θ) := E(X; θ), but it is not usable
because we are unable to pinpoint θ . The classical approach by
Bühlmann (1967) tackles this byminimizing the expected squared
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1 We will use Θ and θ interchangeably unless it causes confusion.

loss:

min
α,β

E

(µ(Θ) − α − βX̄)2


,

where X̄ = n−1n
i=1 Xi and the expectation is over all the random

variables. The resulting minimizer leads to the celebrated credibil-
ity premium

Pc = ZX̄ + (1 − Z)µ, (1)

where µ = E[µ(θ)] is the collective premium for the portfolio of
all insureds, and

Z =
n

n + v/a

with v = E[Var(X; θ)] and a = Var[µ(θ)]. While the credibil-
ity premium is seen to be an approximation to the unknown in-
dividual premium, it is actually identical to the Bayes premium
E(X |X1, . . . , Xn) for, e.g., Linear Exponential Family of distribu-
tions and its conjugate priors (Jewell, 1974). A major advantage
of the credibility premium over the Bayes premium is in its abil-
ity to calculate premiums straightforwardly in non-parametric set-
tingswithout specifying the underlying distributions. The reader is
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referred to standard texts by Klugman et al. (2008) and Bühlmann
and Gisler (2005) for further details on the classical credibility
theory.

Various adaptations and extensions have been made in the
credibility literature in the last several decades following the clas-
sical Bühlmann’s approach. For example, different loss functions
were considered. Instead of the squared loss, the exponentially
weighted loss yielding the Esscher premium principle is consid-
ered in Gerber (1980) and Pan et al. (2008). The exponential loss
is considered by Ferreira (1977), Denuit and Dhaene (2001), and
Morillo and Bermúdez (2003). In fact Heilmann (1989) considers
various loss functions in the form g(x)(h(x) − h(a))2 that contains
the Esscher premium principle as a special case. In a recent article
Gómez-Déniz (2008) provides a credibility premium driven from a
weighted balanced loss function.

Another direction of extension is made on the probability func-
tion. Wang and Young (1998) suggests the following risk-adjusted
credibility premium:

∞

0
g[1 − F(x|X)]dx, (2)

where g is a distortion function (Denneberg, 1994). The risk-
adjusted premium (2) reduces to the usual Bayes premium at g(y)
= y.

In this paper we propose a credibility theory based on truncat-
ing (or trimming) the original data.More specifically the ground up
losses are truncated both from above and below at different points,
say, p- and q-quantiles, respectively. The idea of using truncation
in credibility can be found in De Vylder (1976). However, in our
approach, the target premium for which the quadratic loss is min-
imized is not the hypothetical mean µ(θ), but its trimmed coun-
terpart (3). Therefore the resulting credibility premium is different
from that of De Vylder (1976) where the semilinear credibility is
targeting the hypothetical mean. There are several advantages us-
ing the trimmed mean, rather than just mean.

1. With suitably selected truncation points the resulting individ-
ual premium and the credibility premium can provide a natu-
ral and intuitive basis to determine the risk loading. This can be
achieved by setting p > 0 and q = 1. This choice actually gives a
coherent risk measure called the Conditional Tail Expectation,2
in the sense of Artzner et al. (1999).

2. Similarly by omitting large loss records actuaries may identify
and measure the risk and impact of large claims that can have
substantial impact on the classical credibility premium. This can
be done buy setting p = 0 and q < 1. This is translated to the
pricing in the presence of policy limits.

3. Further varying the value of (p, q), actuaries can capture the tail
thickness of the underlying lossmodels and further examine the
sensitivity of the premium to the right tail risk. For instance, two
different loss models may have comparable classic credibility
premium even though their tails are substantially different. The
proposed model can identify and distinguish this difference.

Regarding the first item, the risk-loaded premium principle has re-
cently received much attention in finance and actuarial commu-
nities for its connection to the discussion on risk measures. Also,
there is a large literature in statistics advocating the use of trimmed
mean as a robust procedure when estimating the location param-
eter.

The present article is organized as follows. In Section 2 basic
properties of the trimmedmean are examined from a riskmeasure
perspective. Section 3 develops some theoretical results for the

2 Also known as the Tail Conditional Expectation, Conditional Value-at-Risk
(CVaR), and Tail Value-at-Risk (TVaR) in the literature.

proposed credibility approach. Two parametric examples are given
in Section 4. In Section 5 we illustrate how the proposed approach
can be used in the non-parametric setting. A numerical example is
presented in Section 6, and Section 7 concludes the article.

2. Formulation

Consider a loss random variable X with df F(x; θ) and density
(or probability mass function if discrete) f (x; θ). The parameter
itself is assumed to be a realization of a (prior) rv Θ with density
π(θ). If we denote the p-quantile F−1(p; θ) by Qp(X; θ), we can
define the trimmed mean as

µp,q(θ) = E[X |Qp(X; θ) < X < Qq(X; θ); θ ],

0 ≤ p < q ≤ 1. (3)

Throughout the article we assume that X is continuous and that
its first two moments exist to be consistent with the classical
credibility theory.

2.1. Trimmed mean as a risk measure

The trimmed mean has long been studied in Statistics as a ro-
bust alternative to the mean, and the class of linear combinations
of order statistics, called the L-estimator class, has been explored as
an extension of the mean or trimmed mean; see, e.g., Staudte and
Sheather (1990) or Hampel et al. (1986). It has also been investi-
gated in the actuarial literature for loss model inferences; see, e.g.,
Brazauskas et al. (2007), Brazauskas et al. (2008), and Brazauskas
et al. (2009).

Consider the following loss criterion

min
d

E


I(Qp < X < Qq)

q − p


(X − d)2


, (4)

where I(·) is the indicator function. The solution is, after straight-
forward algebra, given by the trimmed mean; the loss function in
fact belongs to the class considered in the premium principle of
Heilmann (1989).

The trimmed mean can be alternatively understood as a mem-
ber of the Distortion RiskMeasure (DRM) class. From the consider-
able literature on the topic of risk measures including, e.g., Artzner
et al. (1999), Denuit et al. (2005), Wang (2000), it is known that a
large class of risk measures, such as the Conditional Tail Expecta-
tion, Value at Risk, and Wang Transform, can be expressed as 1

0
Qu(X; θ)g ′(1 − u)du (5)

where g : [0, 1] → [0, 1], an increasing function with g(0) = 0
and g(1) = 1, is called the distortion function; see, e.g., Jones and
Zitikis (2003) and Furman and Zitikis (2008) and the references
therein for further discussions. Using a variable transformation we
see that the DRM (5) can be rewritten as E[Xg ′(1 − F(X; θ))]. This
allows us to identify the DRM as the minimizer of

min
a

E

g ′(1 − F(X; θ)) (X − a)2


. (6)

The connection of the DRM and the trimmed mean is made by
choosing the following distortion function for the trimmed mean

g(u) =


0, 0 ≤ u ≤ 1 − q,
u + q − 1

q − p
, 1 − q < u ≤ 1 − p,

1, 1 − p < u ≤ 1.
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