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h i g h l i g h t s

• Magnitude-free mortality durations and convexities are defined and derived.
• The weights of a portfolio are determined by duration/convexity matching strategies.
• The matching strategies can be used for hedging mortality/longevity risks.
• A portfolio of two products of life insurance and annuity is always feasible.
• Three-product portfolios are not always feasible under some conditions.
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a b s t r a c t

In this paper, we apply the linear hazard transform to mortality immunization. When there is a change in
mortality rates, the respective surplus (negative reserve) changes for life insurance and annuity policies
lead to oppositive sign changes, which provides mortality hedging strategies with a portfolio of life
insurance and annuity policies. We first show that by the strategy of matching duration of the weighted
surplus at time 0, the surplus changes at time 0 for both portfolios PTP (the n-year term life insurance and
the n-year pure endowment) and PWA (the n-paymentwhole life insurance and the n-year deferredwhole
life annuity) in response to a proportional or parallel shift in the underlying force of mortality are always
negative. Next, we prove that the term life insurance, the whole life insurance and the deferred whole
life annuity cannot always form a feasible portfolio (feasibility means that all the weights of the product
members of a portfolio are positive) by the strategy of matching two durations or one duration and one
convexity of the weighted surplus at time 0. Finally, numerical examples including figures and tables are
exhibited for illustrations.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

In actuarial science, the Gompertz, Makeham andWeibull laws
are common forces of mortality for modeling human mortality
rates. The force of mortality µx(·) for an insured aged x plays an
important role in actuarial pricing since kpx, the probability that
the insured survives k years, can be expressed in terms of µx(·),
that is, kpx = e−

 t
0 µx(s)ds. Actually, µx(·) is a hazard rate because

µx(t) = −[∂ tpx/∂t]/tpx and tpx is a survival distribution. The pro-
portional transform of µx(·) is obtained by multiplying it with a
constant (1+α) to form (1+α)µx(t). Its actuarial applications can
bewidely found in the literature in 1995–1999. For example,Wang
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(1995) gave a premium calculation principle based on the pro-
portional hazard transform for insurance pricing and increased
limits ratemaking. It is called Wang’s premium calculation prin-
ciple which has many properties for measuring risks. Wang (1996)
showed that his premium principle resembles the risk-neutral val-
uation in financial economics, but differs from the traditional util-
ity theory approach.

When a constant β is further added to the proportional hazard
transform, the linear hazard transform is formed as (1+α)µx(t)+
β . Actuarial applications of the linear hazard transform can be
found in Tsai and Jiang (2011, 2013). The former combined the as-
sumption of α-power approximation with the linear hazard trans-
form to approximate the net single premium of a continuous life
insurance policy in terms of the net single premiums of discrete
ones. Moreover, Macaulay duration, modified duration and dollar
duration, all measuring the sensitivity of the price of a life insur-
ance or annuity policy to movements of the force of mortality un-
der the linear hazard transform,were defined and investigated. The
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latter applied the linear hazard transform to mortality fitting and
prediction by assuming that there is a linear relation plus an error
term between the forces of mortality for two mortality sequences.
Then the parameters α and β of the linear relation are obtained by
fitting the target sequence by the source one with the method of
regression. When these two mortality sequences are for two dif-
ferent years, the parameters of the linear hazard transform can be
used tomake a sequence of forward or backwardmortality predic-
tion for the year we are interested in.

In finance, interest rate immunization ensures that the value of
a portfolio will not be affected in response to a change in interest
rates. Consider a block of life insurance policies and associated
assets. Let At ≥ 0 and Lt ≥ 0 be the asset and liability cash flows
expected at time t , respectively, and Nt = At − Lt be the net cash
flow at time t . If the force of interest is δ, then the present value
of the net cash flows at time 0 is equal to S0(δ) =


t≥0 Nt · e−δt .

One of interest rate immunization problems is to study what the
conditions are on the cash flows such that

S0(δ + ϵ) ≥ S0(δ) (1.1)

when the force of interest δ is changed to δ+ ϵwhere ϵ is a positive
or negative number.

By expanding S0(δ + ϵ) to S0(δ + ϵ) = S0(δ)+ ϵ · S ′

0(δ)+ ϵ2 ·

S ′′

0 (δ + ζ )/2 where ζ is some value between 0 and ϵ, Redington
(1952) demonstrated that

S ′

0(δ) = −


t≥0

t · Nt · e−δt
= 0

and

S ′′

0 (η) =


t≥0

t2 · Nt · e−ηt
≥ 0

for all η imply (1.1). Note that −S ′

0(δ) and S ′′

0 (δ)/S0(δ) are so-
called dollar duration and convexity of S0(δ) in finance, respec-
tively. Fisher and Weil (1971) studied this immunization problem
for single liability LT paid at time T and relaxed Redington’s as-
sumption of constant force of interest. The Fisher–Weil immuniza-
tion theorem states that if the assets and the liabilities have the
same present values and durations, that is,
t≥0

At · e−
 t
0 δ(s)ds = LT · e−

 T
0 δ(s)ds,

and
t≥0

t · At · e−
 t
0 δ(s)ds = T · LT · e−

 T
0 δ(s)ds,

then
t≥0

At · e−
 t
0 (δ(s)+ϵ)ds ≥ LT · e−

 T
0 (δ(s)+ϵ)ds. (1.2)

Shiu (1987) extended the Fisher–Weil immunization theorem by
assuming that the shift ϵ is a function of time as well. He showed
that if [ϵ(t)]2 ≥ ϵ′(t) for each t then (1.2) holds, and if [ϵ(t)]2 ≤

ϵ′(t) for each t , then the inequality in (1.2) is reversed. Shiu (1988)
studied the multiple-liability immunization problem and demon-
strated that the separate immunization of each liability outflow is
not only a sufficient condition but also a necessary one for the im-
munization of multiple liabilities. Shiu (1990) proposed


t≥0 t ·

nt = 0 and


t≥0[(t − w)+] · nt ≥ (≤) 0 for all positive w where

nt = Nt · e−
 t
0 δ(s)ds as two sufficient conditions for

S0(δ + ϵ) =


t≥0

Nt · e−
 t
0 [δ(s)+ϵ(s)]ds

≥ (≤)

t≥0

Nt · e−
 t
0 δ(s)ds

= S0(δ) (1.3)

provided that the shift function ϵ(·) is constant as in Redington’s
model. Condition


t≥0[(t − w)+] · nt ≥ (≤) 0 is difficult to ver-

ify since it needs to be satisfied for each positive w. Instead, since
t≥0 nt = 0 and


t≥0 t · nt = 0 imply that sequence {nt : t

≥ 0} has at least two sign changes, Shiu (1990) applied Lemma
4 (p. 202) of Goovaerts et al. (1984) and showed that if sequence
{nt : t ≥ 0} has exactly two sign changes and the pattern is of the
form +,−,+ (−,+,−) then


t≥0 φ(t) nt ≥ (≤) 0 for all convex

functions φ(·) including φ(t) = (t − w)+ for each positivew.
Mortality immunization ensures that the value of surplus (neg-

ative reserve) of an insurance portfolio will not be negatively af-
fected when a change in mortality rates is made. The underlying
portfolio consists of life insurance and annuity policies since their
surpluses are affected reversely in response to a change in mortal-
ity rates. Natural hedging for mortality risks uses this character-
istic of life insurance and annuities to a change in mortality rates
to hedge against unexpected changes in future benefits. Cox and
Lin (2007) found empirical evidence that annuity insurers with
the natural hedging strategy charge smaller premiums than oth-
erwise similar insurers. Wang et al. (2010) combined an immu-
nization approachwith a stochasticmortalitymodel to compute an
optimal life insurance–annuity product mix ratio to hedge against
longevity risks. Inspired by Shiu (1990), we apply the linear hazard
transform to study some similar problems focusing on mortality
immunization. The verifiable sufficient conditions above for (1.1)
proposed by Shiu (1990) are still based on a constant shift ϵ as in
Redington’s model; otherwise the sufficient conditions associated
with a general shift function of time, ϵ(t), might be difficult to ver-
ify. First, consider the force of mortality µx(t) for the insured aged
x. The linear transform of µx(t), (1 + α) · µx(t)+ β , can be inter-
preted as that the force of mortalityµx(t) is shifted proportionally
and constantly to (1+α) ·µx(t)+β . In this case, the shift function
ϵ(t) = α·µx(t)+β is not constant unlessα = 0. Thenwe are going
to propose some sufficient conditions such that the sign of the sur-
plus change due to a change inα orβ is always positive or negative.

The remainder of the paper proceeds as follows. In Section 2,
we define durations and convexities of the net single premium
and the surplus of a life insurance/annuity product at time zero
with respect to a proportional or parallel shift in the underlying
force of mortality. We prove that the signs of both durations and
convexities of the net single premium and the surplus at time zero
for of life insurance and annuity products are opposite. Section 3
studies mortality immunization for two portfolios, each of which
consists of an annuity and a life insurance products. When the
durationmatching strategy is adopted, we show that the change of
the weighted surplus at time zero for each of these two portfolios
in response to a proportional or parallel change in the underlying
force of mortality is always negative. In Section 4, we investigate
mortality immunization for a portfolio comprising three products
— the term life insurance and the whole life insurance plus the
whole life annuity. When the strategy of matching two durations
or one duration and one convexity is adopted, we demonstrate
that not all of the three weights for the portfolio are positive, that
is, the portfolio is not always feasible. Finally, relevant numerical
examples are given for illustration in Sections 3 and 4.

2. Duration and convexity

Duration is a corner stone of the strategy for immunization.
Macaulay duration, modified duration and dollar duration are
three common types of durations in finance, which measure the
sensitivity of the price of an asset to a parallel shift in the interest
rate. Durations are widely used in asset and liability management
to help match liabilities with assets in order to stabilize cash
flows in the future. The duration matching strategy is a common
approach of hedging interest rate risks for an interest-sensitive
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