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HIGHLIGHTS

We model the mortality surface with continuous-time, cohort-based stochastic intensities.

We specify to two-factor, Ornstein-Uhlenbeck intensities.

Fit of historical data is good, both deterministic and stochastic forecast reliable.
Differential-Evolution algorithm provides cohort correlations high but not perfect.

[
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o We model and calibrate correlation across different cohorts.
[
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We study and calibrate a cohort-based model which captures the characteristics of a mortality surface
with a parsimonious, continuous-time factor approach. The model allows for imperfect correlation of the
mortality intensity across generations. It is implemented on UK data for the period 1900-2008. Calibration
by means of stochastic search and the Differential Evolution optimization algorithm proves to yield robust
and stable parameters. We provide in-sample and out-of-sample, deterministic as well as stochastic
forecasts. Calibration confirms that correlation across generations is smaller than one.
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1. Introduction

Insurance companies and pension funds are exposed to mortal-
ity risk and hope for the development of a liquid and transparent
longevity-linked capital market. Active trading of mortality deriva-
tives would help them assessing and hedging the risks they are ex-
posed to, in the same manner as financial models and markets help
them mutualize financial risks. Mortality-risk appraisal consisting
in an accurate but easy-to-handle description of human survivor-
ship is fundamental in this respect.

In spite of this need, no consensus has been reached yet on the
best model for mortality risk modeling. A number of successful
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proposals have been put forward. Most of these models, starting
from the celebrated (Lee and Carter, 1992) model and its several
extensions - that include for instance Brouhns et al. (2002) and
Renshaw and Haberman (2003), up to the more recent Cairns
et al. (2006b) two-factor model - are discrete-time descriptions
of survivorship evolution. In some cases though the adoption
of a continuous-time approach proves useful. This is the case
when we couple the appraisal of mortality and financial risk,
and we adopt some financial model such as Black-Scholes or
Duffie et al. (2000). Another motivation for adopting a continuous-
time description is the search for closed-form evaluation formulas
for insurance products and their derivatives. Continuous-time
stochastic mortality models for single generation were considered
by a number of researchers, including Milevsky and Promislow
(2001), Dahl (2004), Biffis (2005), Cairns et al. (2006a), Schrager
(2006) and Luciano and Vigna (2008).
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Be it discrete or continuous-time based, a proper description
of mortality risk should capture several dimensions. Consider
survival probabilities over a given horizon. A satisfactory model
should capture their evolution when changing the horizon, for a
fixed initial age and cohort (or generation), and its evolution over
cohorts, for fixed initial age and horizon. Introducing the cohort
dimension though adds a level of complexity to the problem, since
it calls for a notion of correlation across generations, which is by
no means easy to capture. In principle one has a whole “mortal-
ity surface” to model. How to do this while keeping a satisfactory
trade-off between the accuracy - or the fit - and the tractabil-
ity of the model is an open issue. A theoretical extension of the
continuous-time single-generation model to the mortality surface
appears in Biffis and Millossovich (2006). This is followed by Black-
burn and Sherris (2012) who focus also on the calibration aspect.
More specifically, in their attempts to calibrate the whole surface
in continuous time they make the assumption of perfect correla-
tion across generations. However, common intuition suggests that
correlation among close generations is high but not perfect. This
suggestion is often implemented in actuarial practice.

In order to reconcile the calibration of the whole mortality
surface with common actuarial practice, this paper fits the
mortality surface by means of a continuous-time cohort model,
that is able to capture correlations across generations. As a
relevant consequence, this model provides the actuary with a
calibrated correlation among generations rather than a “best
estimate” one. Given the same initial age, the intensities of several
generations are written in terms of factors, identified via Principal
Component Analysis (PCA). Differential Evolution algorithm is a
robust stochastic search and optimization algorithm which already
proved its use across a wide range of engineering applications.
We use it to fit the mortality surface with an extreme precision.
Provided that we fully exploit the power of this stochastic search
algorithm, we discover that the fitted parameters are extremely
robust, stable and lead to correlations across generations that is
high but less than one.

The paper unfolds as follows. In Section 2, we review mortality
modeling via affine mortality intensities for a single generation.
Then, we develop ex-novo a model for the mortality intensities of
several generations, i.e. we model the mortality surface. Section 3
specifies a simple two-factor model for modeling the mortality
surface, which will then be calibrated. In Section 4, we discuss
the criteria that a good mortality model for the mortality surface
should satisfy. In Section 5, we proceed to the empirical part. We
use PCA to identify the number of relevant factors and apply it to
UK males data from the Human Mortality Database. We review the
Evolutionary Approach to the global minimum/maximum search
and use it in Section 6 to calibrate a two-factor model to a number
of UK generations born between 1900 and 1950. We discuss all the
key criteria introduced in Section 4. In Section 7 we use polynomial
interpolation to further improve parsimoniousness of the model. In
Section 8, we conclude and outline further research.

2. The mortality model

In Section 2.1, we illustrate the stochastic mortality intensity
setup for one generation only—as is standard in this kind of litera-
ture. In Section 2.2, we specify how to move on from the descrip-
tion of the mortality intensity of one generation to the mortality
intensities of several generations. This procedure enables us to de-
scribe the whole mortality surface. In Section 2.3, we restrict our-
selves to constant-parameter dynamics of the Ornstein-Uhlenbeck
type. The general mortality model is described in Section 2.4, and
a simplified version of it is presented in Section 2.5.

2.1. The affine mortality framework for the single generation

As in the standard unidimensional framework of stochastic
mortality (see e.g. Biffis, 2005; Dahl, 2004) we describe the mor-
tality of a given generation by means of a Cox or doubly stochastic
counting process. Intuitively, the time of death is supposed to be
the first jump time of a Poisson process with stochastic intensity.

Let us introduce a filtered probability space (£2, #, ()0, P),
where P is the real-world probability measure. The filtration
{F: : 0 <t < T} satisfies the usual properties of right-continuity
and completeness. On this space, let us consider a predictable
process w(t, x), which represents the mortality intensity of an
individual belonging to a given generation, initial age x at
(calendar) time t. Her death is the first stopping time of a doubly
stochastic process with intensity w(t, X).

We model the intensity w(t, x) of the given generation and
initial age x as a function R(X) of a vector of state processes

X(t) = [X1(0), ..., X (D] .

For notational simplicity, in the rest of this section we will omit
the argument x. Therefore, we have that

u(t) = R(X(t)). (1)

Moreover, in order to keep the model mathematically tractable,
we put ourselves in the affine framework of Duffie et al. (2000)
(sometimes referred to as DPS). In this setting X is a Markov process
in some state space D C R" and it is the solution to the stochastic
differential equation

dX(t) = A(X(t))dt + o (X(t))dZ(t),
where Z is an (#;)-standard Brownian motion in R", A
R", 0 :D— R™" X,o,andR : D — R are affine:

o A(x) = Ky + Kqx, for K = (Ko, K1) € R" x R,
° (a(x)a(x)T),-j = (Ho)jj + (Hy)j - x, for H = (Hp, Hy) € R™" x

RHXHXH

: D —

® R(x) = ryg + rix, where (rp, r;) € R x R".

The advantage of this affine choice is that it is possible to calculate
in closed form the expectation of functionals of the state variables.
In fact, we have

T . .
E[e‘ff R(X(s))ds | ?-t] — eoz(t,T)+/3([,T)-X(t)7 (2)

where the coefficients «(-; T), B(-; T)
complex-valued ODEs

: Rt — R" satisfy the

1
B(t:T) =1 —K{B(t;T) — B T)TH B(t; T),

1
o« (1) =10~ KoB(5;T) = S B(E; T) "HoB(t; T),

with boundary conditions «(T, T) = (T, T) = 0.

In the actuarial context, if the intensity is given by (1), the
expectation (2) is the survival probability from t to T, conditional
on being alive at t:

S(t,T) = E, |:e— I R(X(s))ds:| —E, |:e— I /L(s)ds:|. (3)

2.2. Transition from single generations to the whole mortality surface

In the previous section we have described the mortality inten-
sity of one given generation. However, our main aim is to describe
the whole mortality surface, that is composed by a number of dif-
ferent generations. We need then to label each generation with a
proper index i € I C N. Each generation has its own mortality in-
tensity and the intensities of different generations are correlated.
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