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h i g h l i g h t s

• We show the nonnegative property of solutions for a class of stochastic equations.
• We investigate the long-term return for stochastic interest rate models.
• An application to a two-factor CIR model is presented.
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a b s t r a c t

The long-term interest rates, for example, determine when homeowners refinance their mortgages in
mortgage pricing, play a dominant role in life insurance, decide when one should exchange a long bond
to a short bond in pricing an option. In this paper, for a one-factor model, we reveal that the long-term
return t−µ

 t
0 X(s)ds for someµ ≥ 1, in which X(t) follows an extension of the Cox–Ingersoll–Rossmodel

with jumps and memory, converges almost surely to a reversion level which is random itself. Such a
convergence can be applied in the determination of models of participation in the benefit or of saving
products with a guaranteed minimum return. As an immediate application of the result obtained for the
one-factor model, for a class of two-factor model, we also investigate the almost sure convergence of
the long-term return t−µ

 t
0 Y (s)ds for some µ ≥ 1, where Y (t) follows an extended Cox–Ingersoll–Ross

model with stochastic reversion level −X(t)/(2β) in which X(t) follows an extension of the square root
process. This result can be applied to, e.g., how the percentage of interest should be determined when
insurance companies promise a certain fixed percentage of interest on their insurance products such as
bonds, life-insurance and so on.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Cox et al. (1985) proposed the short-term interest rate dynam-
ics as

dS(t) = κ(γ − S(t))dt + σ

S(t)dW (t)

for positive constants κ, γ and σ and standard Brownian motion
{W (t) : t ≥ 0}. This model is known as the Cox–Ingersoll–Ross
(CIR) model and has some empirically relevant properties, e.g., the
randomly moving interest rate is elastically pulled towards the
long-term constant value γ . In order to better capture the prop-
erties of empirical data, Chan et al. (1992) nested a wide range of
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models of the short-term interest rate in the framework

dS(t) = κ(γ − S(t))dt + σ S(t)αdW (t) (1)

for α ≥ 1/2 with appropriate restrictions on the parameters
κ, γ , α. Here γ , toward which rates drift, stands for the long-term
mean of the process, κ means the speed of the drift, σ measures
the volatility, and 2α denotes the variance elasticity. In particu-
lar, by the X2 test to the one-month US. Treasury bill yields, Chan
et al. (1992) compared the ability of eachmodel with different α to
capture the volatility of the term structure, found that the value of
α is the most important feature differentiating interest rate mod-
els, and revealed that the most successful models in capturing the
dynamics of the short-term interest rate are those that allow the
volatility of interest rate changes to be highly sensitive to the level
of the riskless rate (e.g., α ≥ 1). Note that the long-term mean γ ,
the speed of drift κ and the volatility σ are not constants either and
there is strong evidence to indicate that they areMarkov jump pro-
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cesses. Another generalization of the CIR model is to use regime-
switching such as in Ang and Bekaert (2002) and Gray (1996), to
name a few. On the other hand, from the economic point of view,
there is some evidence indicating that certain events happening
before the trading periods influence the current and future asset
price, and thereforemany scholars introduce delays to the financial
models. For example, Arriojas et al. (2007) took delay into consid-
eration for the price process of underlying assets and developed a
Black–Scholes type formula. Benhabib (2004) considered a linear,
flexible price model, where nominal interest rates are measured
by a flexible distributed delay. Stoica (2004) computed the loga-
rithmic utility of an insider when the financial market is modeled
by a stochastic delay equation and offered an alternative to the
anticipating delayed Black–Scholes formula. However, the mean-
reverting square root process cannot explain some empirical phe-
nomena, such as stochastic volatility. To explain these phenomena,
jump processes are also used in the financial models, e.g., Bardhan
and Chao (1993), Chan (1999), Henderson and Hobson (2003) and
Merculio and Runggaldier (1993).

There is extensive literature on quantitative and qualitative
properties of the generalized CIR-typemodels. For instance, differ-
ent convergence results and the corresponding applications of the
long-term returns are found in Deelstra and Delbaen (1995, 1997)
and Zhao (2009). Strong convergence of the Monte Carlo simula-
tions are studied in Deelstra and Delbaen (1998) and Wu et al.
(2008, 2009), and the representations of solutions are presented
in Arriojas et al. (2007) and Stoica (2004). Deelstra and Delbaen
(1995, 1997) investigated the long-term returns of the CIR model,
and Zhao (2009) extended those results to the jump models.

Noting that the reversion level γ in (1) is a constant, in order
to better reflect the time dependence caused by the cyclical nature
of the economy or by expectations concerning the future impact of
monetary, as in Deelstra and Delbaen (1995, 1997), we can assume
that the short-term interest rate model has a stochastic reversion
level.

As described above, there is a naturalmotivation for considering
the stochastic interest rate model where all three features, delay,
jumps and time dependence of reversion level, are presented. In
this paper, we consider the stochastic interest rate model with
jumps and memory in the form

dX(t) = {2βX(t)+ δ(t)}dt + σXγ (t − τ)


|X(t)|dW (t)

+


U
g(X(t−), u)Ñ(dt, du),

X0 = ξ ∈ D,

(2)

where X(t−) := lims↑t X(s) and D denotes all real bounded
càdlàg functions defined on [−τ , 0] for some τ > 0. The integral
U g(X(t−), u)Ñ(dt, du) depends on the Poisson measure and is

regarded as a jump. The diffusion term is dependent on the past
through Xγ (t − τ) and so is called delay or memory. Precise as-
sumptions on the data of the problem (2) are given in Section 2
below.

The long-term interest rates play an important role in finance
and insurance. For instance, the long-term interest rates determine
when homeowners refinance their mortgages in mortgage pricing,
play a dominant role in life insurance, decide when one should
exchange a long bond to a short bond in pricing an option. In this
light, for the instantaneous interest rate model (2), it is interesting
to investigate the long-term return t−µ

 t
0 X(s)ds for some µ ≥ 1.

We shall reveal that the long-term return t−µ
 t
0 X(s)ds converges

almost surely to a stochastic reversion level, which will be stated
in Theorem 1 below. As stated in Deelstra and Delbaen (2000),
the limit of long-term return t−µ

 t
0 X(s)ds can be applied in the

determination of models of participation in the benefit or of saving
products with a guaranteed minimum return.

As we know, one-factor models imply that the instantaneous
returns on bonds of all maturities are perfectly correlated, which
is clearly inconsistent with reality, e.g., Longstaff and Schwartz
(1992). However empirical research, e.g., Brigo and Mercurio
(2006), Cassola and Barros Luis (2001) and Longstaff and Schwartz
(1992), has suggested that two-factor models, including the short-
term interest rate and the instantaneous variance of changes in the
short-term interest rate, are better than one-factor models to cap-
ture the behavior of the term structure in the real world. This is
because the two-factor models allow contingent claim values to
reflect both the current level of interest rates as well as the current
level of interest rate volatility. Cox et al. (1985, p. 399) introduced a
model by two independent factors, r1 and r2, and the instantaneous
interest rate is the sum of two factors, that is,
r(t) = r1(t)+ r2(t)
dri(t) = κi(θi − ri(t))dt + σi(t)


ri(t)dBi(t), i = 1, 2,

where B1(t) and B2(t) are independent Brownianmotions, θi is the
long-term mean factor ri reverts to, and κi and σi are constants. In
another example of a multi-factor model, the domestic short-rate
rd and the European short-rate re satisfy the following stochastic
differential equation (SDE)drd = [a + b(re − rd)]dt + σddBd(t),
dre = c(d − re)dt + σedBe(t),
Cov(dBd(t), dBe(t)) = ρdt,

where Bd(t) and Be(t) are Brownian motions with instantaneous
correlationρ, and a, b, c, d, σd, σe are positive constants, Corzo and
Schwartz (2000) investigated how to price the European bond and
several other interest rate derivatives. As an immediate application
of Theorem 1, we consider the long-term return of the two-factor
model in the form

dX(t) = {2β1X(t)+ δ(t)}dt + σ1Xγ1(t − τ)


|X(t)|dW1(t)

+ϑ1X(t)

U
uÑ1(dt, du),

dY (t) = {2β2Y (t)+ X(t)}dt + σ2Y γ2(t − τ)


|Y (t)|dW2(t)

+ϑ2Y (t)

U
uÑ2(dt, du)

(3)

with the initial data (X(t), Y (t)) = (ξ(t), η(t)), t ∈ [−τ , 0]. Here
W1(t),W2(t) are Brownian motions, N1(dt, du),N2(dt, du) rep-
resent Poisson counting measures, defined on (Ω,F , {Ft}t≥0, P),
with characteristic measures λ1(·) and λ2(·) respectively, and
ξ, η ∈ D . More details on the parameters of model (3) are to
be presented in Section 4. In model (3), the short interest rate
Y (t) follows an extended CIRmodel with stochastic reversion level
−X(t)/(2β), where X(t) follows an extension of the square root
process. For model (3), we are interested in the almost sure con-
vergence of the long-term return t−µ

 t
0 Y (s)ds for some µ ≥ 1.

Such a convergence can be applied to the finance and insurance
markets. For example, the customer wants a return as high as pos-
sible, and insurance companies wonder how the percentage of in-
terest should be determined when they promise a certain fixed
percentage of interest on their insurance products such as bonds,
life-insurance and so on.

The rest of the paper is organized as follows. In Section 2 we
introduce some preliminaries, show the nonnegative property of
X(t) as nominal instantaneous interest rate determined by (2), and
give an auxiliary lemma of Theorem 1. Section 3 is devoted to
the almost sure convergence of long-term return t−µ

 t
0 X(s)ds for

some µ ≥ 1 with X(t) a generalized CIR model determined by (2),
in which the corresponding results in Deelstra and Delbaen (1995,
1997) and Zhao (2009) are extended. In the final section, as an
application of Theorem1,we consider the almost sure convergence
of long-term return t−µ

 t
0 Y (s)ds for some µ ≥ 1 determined by

(3) with stochastic reversion level −X(t)/(2β), where the results
of Zhao (2009, Theorem 2) are developed.
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