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a b s t r a c t

A method to estimate an extreme quantile that requires no distributional assumptions is presented. The
approach is based on transformed kernel estimation of the cumulative distribution function (cdf). The
proposed method consists of a double transformation kernel estimation. We derive optimal bandwidth
selection methods that have a direct expression for the smoothing parameter. The bandwidth can
accommodate to the given quantile level. The procedure is useful for large data sets and improves quantile
estimation compared to other methods in heavy tailed distributions. Implementation is straightforward
and R programs are available.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Risk measures and their mathematical properties have been
widely studied in the literature (see, for instance, the books by
McNeil et al. (2005) and Jorion (2007) or articles such as Dhaene
et al. (2006) among many others). Most of those contributions and
applications in risk management usually assume a parametric
distribution for the loss random variable,1 but deviations from
parametric hypothesis can be critical in the extremes and pro-
duce inaccurate results (see, Kupiec, 1995). Krätschmer and Zähle
(2011) investigated the error made evenwhen the normal approx-
imation is plugged in a general distribution-invariant riskmeasure.
Alternatively, a suitable heavy tailed parametric distribution canbe
fitted (see, for example, McNeil et al., 2005; Jorion, 2007; Bolancé
et al., 2012b). Extreme value theory can also be used to locate the
tail of the distribution (see, Reiss and Thomas, 1997; Hill, 1975;
Guillén et al., 2011).

Our approach is nonparametric as in Peng et al. (2012), Cai and
Wang (2008) and Jones and Zitikis (2007). We propose a method
to estimate quantiles that is based on a nonparametric estimate of
the cumulative distribution function with an optimal bandwidth
at the desired quantile level. Eling (2012) recently used a similar
benchmark nonparametric fit to describe claims severity distribu-
tions in property-liability insurance (see, Bolancé et al., 2012b, for
details) but the choice of the smoothing parameter needs further
analysis. Besides, Eling (2012) was interested in the fit for the
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1 Standard industry models such as CreditRisk+ are parametric. See, Fan and Gu
(2003), and references therein for semiparametric models.

density of claims severity, not on risk measurement or quantiles.2
We present the nonparametric estimation approach and focus on
the bandwidth choice. We also carry out a simulation exercise.

A risk measure widely used to quantify the risk is the value-at-
risk with level α. It is defined as follows,

VaRα (X) = inf {x, FX (x) ≥ α} = F−1
X (α) , (1)

where X is a random variable with probability distribution func-
tion (pdf) fX , and cumulative distribution function (cdf) FX . Artzner
et al. (1999) discussed other riskmeasures, but they stated that ex-
pected shortfall is preferred in practice due to its better properties,
although value-at-risk is widely used in applications.

The VaRα is used both as an internal risk management tool and
as a regulatory measure of risk exposure to calculate capital ade-
quacy requirements in financial and insurance institutions. In this
paperwe propose amethod to estimate the VaRα in extreme quan-
tiles, based on transformed kernel estimation (TKE) of the cdf of
losses. The proposed method consists of a double transformation
kernel estimation (DTKE), and it works well for very extreme lev-
els and a large sample size. It also improves quantile estimation
compared to existing methods. An additional contribution is that
we propose a simple expression for an optimal bandwidth param-
eter. Thus, we advocate that there is little advantage of assuming
parametric distributions when calculating value-at-risk for heavy

2 Eling (2012) worked with two empirical data sets. The first dataset is US
indemnity losses and the second is comprised of Danish fire losses. His work
indicated that the transformation kernel (Bolancé et al., 2003) is the best and second
best approachwhen comparedwith the parametric distributions in terms of the log
likelihood value in his applications. The transformation kernel approach performed
extremely well there and confirmed the results presented by Bolancé et al. (2008a)
for auto insurance.
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tailed data, given that the nonparametric approach implementa-
tion is very straightforward and provides consistent results.

Some previous research has already studied nonparametric
estimation of quantiles. On the one hand Azzalini (1981) suggested
to estimate the cdf and then to obtain the quantile from its inverse
function. On the other hand Harrell and Davis (1982) proposed
an alternative quantile estimator, based on a weighted sum of
sample observations. Later, Sheather and Marron (1990) analyzed
the existing kernel methods for quantile estimation and proposed
a smoothing parameter. None of those contributions, however,
focused onhighly skewedor heavy tailed distributions,whichmost
often appear in financial and insurance risk management.

Recently, Swanepoel and Van Graan (2005) presented kernel
estimation of a cdf using nonparametric transformation, i.e. a
simple form of transformed kernel estimation. Instead, Bolancé
et al. (2008b) used a parametric transformation, which provides
good results in the estimation of conditional tail expectation. Here,
we propose an improved nonparametric procedure to estimate the
VaRα in finance and insurance applications and derive an optimal
expression for the bandwidth parameter.

A principal difference between our transformed kernel estima-
tion and the fit of a heavy tailed parametric loss distribution is that
we use sample information to estimate the parameters of an ini-
tial parametric model and, later, we also use the sample informa-
tion to correct this initial fit. The proposed method works when
losses have a heavy tailed distribution and it is easy to implement.
It is very flexible, so it is comparable to the empirical distribu-
tion approach. We can affirm that the method proposed in this
work smooths the shape of the empirical distribution and extrapo-
lates its behaviorwhen dealingwith extremes, where data are very
scarce or non existent.

The results of our simulation study show that our double trans-
formed kernel estimation method can be applied to risk measure-
ment and is specially suitable when the sample size is large. This
is useful when basic parametric densities provide a poor fit in the
tail. In the transformed kernel approach, no parametric form is im-
posed on the loss distribution, but, most importantly, this method
avoids definingwhere the tail of the loss distribution starts in order
to apply extreme value theory.

When writing this article, we decided to summarize basic non-
parametric concepts that appear quite frequently elsewhere.3 To
make the presentation self-contained, we introduce kernel estima-
tion notation in Section 2 and we present nonparametric estima-
tion of a pdf and a cdf. We also describe nonparametric estimation
of cdf in connection with estimation of value-at-risk. Section 3
introduces transformation kernel estimation of a cdf and a new re-
sult on its asymptotic properties. Double transformation kernel es-
timation of a cdf and the selection of the smoothing parameter are
studied in Section 4. Section 5 presents a simulation study where
we can confirm the properties of themethods proposed in the pre-
vious sections. The most relevant conclusions and a discussion are
given in the last section. Implementation tools in R are available
from the authors and detailed hands-on examples of transforma-
tion kernel estimation can be found in Bolancé et al. (2012b).

2. Nonparametric estimation of a cumulative distribution
function

Let X be a random variable which represents a loss amount; its
cdf is FX . Let us assume that Xii = 1, . . . , n denotes data observa-
tions from the loss random variable X . For instance, loss data may

3 Many recent contributions in insurance are based on nonparametric statistical
methods. For instance, Lopez (2012) provided a new nonparametric estimator of
the joint distribution of two lifetimes for mortality analysis and Kim (2010) studied
the bias of the empirical distortion risk measure estimate.

arise from historical simulation or they may have been generated
in a Monte Carlo analysis. A natural nonparametric method to es-
timate cdf is the empirical distribution,

Fn(x) =
1
n

n
i=1

I(Xi ≤ x), (2)

where I(·) = 1 if condition between parentheses is true. Then, the
empirical estimator of value-at-risk is:

VaRα (X) = inf

x,Fn (x) ≥ α


. (3)

Estimation of the empirical distribution is very simple, but it
cannot extrapolate beyond themaximumobserved data point. This
is especially troublesome if the sample is not too large, and one
may suspect that the probability of a loss larger than themaximum
observed loss in the data sample is not zero.

Classical kernel estimation (CKE) of cdf FX is obtained by inte-
gration of the classical kernel estimation of its pdf fX . By means of
a change of variable, the usual expression for the kernel estimator
of a cdf is obtained:
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 x
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fX (u)du =

 x

−∞

1
nb
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k

u − Xi

b
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=
1
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 x−Xi
b
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k (t) dt =
1
n

n
i=1

K

x − Xi

b


, (4)

where k(·) is a pdf, which is known as the kernel function. It is
usually a symmetric pdf, but this does not imply that the final
estimate of FX is symmetric. Function K(·) is the cdf of k(·). Some
examples of very common kernel functions are the Epanechnikov
and the Gaussian kernel (see, Silverman, 1986). Parameter b is
the bandwidth or the smoothing parameter. It controls for the
smoothness of the cdf estimate. The larger b is, the smoother the
resulting cdf. The classical kernel estimation of a cdf as defined
in (4) is not much different to the expression of the well-known
empirical distribution in (2). Indeed, in (4) one should replace
K


x−Xi
b


by I(Xi ≤ x) in order to obtain (2). The main difference

between (2) and (4) is that the empirical cdf only uses data below
x to obtain the point estimate of FX (x), while the classical kernel
cdf estimator uses all the data above and below x. In other words,
the empirical cdf gives more weight to the observations that are
smaller than x than it does to the observations that are larger than x.

In practice, to estimate VaRα fromFX (·), we use the Newton–
Raphson method to solve the equation:FX (x) = α. (5)

Properties of kernel cdf estimatorwere analyzedbyReiss (1981)
and Azzalini (1981). Both point out that when n → ∞, the mean
squared error (MSE) ofFX (x) can be approximated by:

E
FX (x) − FX (x)

2
∼

FX (x) [1 − FX (x)]
n

− fX (x)
b
n


1 −

 1

−1
K 2 (t) dt


+ b4


1
2
f ′

X (x)


t2k (t) dt
2

=
FX (x) [1 − FX (x)]

n
− u (x) + b4v (x) , (6)

where as in Azzalini (1981)

u (x) = fX (x)
b
n


1 −

 1

−1
K 2 (t) dt
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