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a b s t r a c t

We show that by modeling the time series of mortality rate changes rather than mortality rate levels we
can better model human mortality. Leveraging on this, we propose a model that expresses log mortality
rate changes as an age group dependent linear transformation of a mortality index. Themortality index is
modeled as a Normal Inverse Gaussian. We demonstrate, with an exhaustive set of experiments and data
sets spanning 11 countries over 100 years, that the proposed model significantly outperforms existing
models. We further investigate the ability of multiple principal components, rather than just the first
component, to capture differentiating features of different age groups and find that a two component NIG
model for log mortality change best fits existing mortality rate data.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Modeling and forecasting mortality rates has been an active
area of research since Graunt (1662) examinedmortality in London
to create a warning system related to the onset and spread
and decline of the bubonic plague. Gaunt’s work showed that
while individual life length was uncertain, there was a more
predictable pattern of longevity and mortality in groups. Halley
(1693) showed how to actually construct a non-deficientmortality
table from empirical birth–death data and showed how to perform
a life annuity calculation based on this table. Such early tables
were empirical and calculation was time consuming. Theoretical
mortality modeling began with de Moivre (1725) who postulated
a uniform distribution of deaths model, and showed simplified
annuity calculation methods. Taking a biological approach to
mathematical modeling, Gompertz (1825) assumed that the
mortality rate represents the body’s propensity to succumb to
death and that its inverse was the body’s ability to withstand
death. Assuming that the change in the body’s ability to withstand
death is proportional to the ability it has to withstand death to
begin with led him to a differential equation whose solution is
exponential. Solving this and then for the survival function that
corresponds to this the solution yields the double exponential
survival curve known as the Gompertz curve, which Gavrilov and
Gavrilova (2011) shows to fit data to approximately ages 102–105.

The abovemortalitymodels are static, however actualmortality
is stochastic and evolves over time. Thus, while the mortality
models described above fit data at a fixed point in time, the
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parameters must be re-fit periodically to accommodate changes in
mortality patterns. Moreover, the forecasting of future mortality
rates is important and not easily accomplished using static
mortality models. Future death rates are important to national
governments, corporations, and insurance companies. National
governments use forecasts ofmortality rates to plan social security
and health care programs. Couzin-Frankel (2011) estimate that
every additional year of life expectancy in the United States costs
the U.S. Social Security Administration $50 billion. Corporations
offering defined benefit pension plans must assure proper funding
of future liabilities, however these future liabilities depend on
the yet to be observed future mortality rates. A 2006 study, by
Pension Capital Strategies and Jardine Lloyd Thompson (2006) in
the UK, found that recognizing the underestimation of expected
lifetimes in FTSE100 index companies would cause the aggregate
deficit in pension reserves to more than double from £46 billion
to £100 billion. In 2010 improved life expectancy added £5 billion
to corporate pension obligations in the U.K. as seen in Reuters
(2010). In the U.S. the level of pension contributions needed for
adequate reserving will increase pension liabilities by 5%–10%,
as seen in Halonen (2007). Similarly, insurance companies must
use mortality forecasts for pricing annuity contracts and to decide
on required future cash reserves. In order to identify, elucidate
and quantify these trends we must have a model that adequately
captures the temporal as well as age specific dynamics of mortality
rates.

1.1. Lee–Carter model and inter-temporal evolution of mortality rates

One of the first papers to model the separate effects of current
age and year was Lee and Carter (1992). These authors propose a
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log-bilinear model for mortality rates incorporating both age and
year effects. Lee and Carter (1992) has been heavily cited and has
been recommended for use by two U.S. Social Security Technical
Advisory Panels, it is also used by the U.S. Bureau of the Census
as a benchmark model, see for example Hollmann et al. (2000).
Moreover since this paper, most othermodels attempting to assess
both time and age evolution of mortality have started with the
Lee–Carter framework.

Lee and Carter (1992) model mortality rates for different ages
over time by extracting an unobserved state variable from the
historical data on mortality rates. This state variable is interpreted
as a single temporal mortality evolution index applicable for each
age group in the entire population. Since each age group is allowed
to respond to the temporal mortality index in different ways, the
mortality rate of each age group is some linear function of the
temporal mortality index. The mortality index itself is modeled as
a Brownian motion with a drift so future predictions of mortality
rates can be made by extrapolating the index. Specifically, Lee and
Carter (1992)modelm(x, t), the centralmortality rate of age group
x at time t , as a bilinear model for ln[m(x, t)],

m(x, t) = eax+bxκt+ϵx,t . (1.1)

Here ax describes the general shape of themortality curve, κt is the
temporal mortality index that captures the evolution of rates over
time, and bx describes each age group’s response or susceptibility
to the temporal mortality index. If bx = 0 or κt is constant,
then one returns to static mortality table construction. To estimate
the parameters of the model the authors use the singular value
decomposition of the matrix of age specific log mortality rates
through time to find thematrix of rank one that best approximates
the actual log mortality rates. This is numerically equivalent to
performing principal component analysis on the covariancematrix
of log mortality rate levels.

1.2. Problems with the Lee–Carter model and its variants

Since mortality rates have been trending downwards over at
least the last 100 years for all age groups, the Lee–Carter estimation
process confounds the first principal component with the time
trend. The fact thatmortality rates are trending downwardsmeans
the covariance matrix of mortality rates vastly overestimates
dependence. For example, the covariance over 100 years between
the log mortality rates of people aged 5–14 and people aged
65–74 is necessarily very high because early in the time series the
mortality rate for both age groups was relatively high compared to
their respective means, and later in the time series the mortality
rate for both age groups was relatively low. This however does
not necessarily mean that if we observe a better than average
change in mortality for 65–74 year olds we should expect a better
than average change for 5–14 year olds. A cure for cancer would
certainly have a large impact on older people and a relatively lesser
effect on children, due to the variability in the causes of death for
different age groups, but when the cure is found both mortality
rates may still decline due to their long term trends. As a result of
this phenomenon the fit of the Lee–Carter model can be explained
by an exogenous variable.

To illustrate this problem, consider, for example, the consumer
price index in Argentina, the miles driven in a particular car, the
population of the earth and the GDP of China. These four variables
have little relation to each other, but a principal component
analysis would certainly show much was ‘‘explained’’ by the
first component because all these variables are highly correlated
with calendar time. As a simple experiment to illustrate this
phenomenon we generated 11 independent Brownian motions
eachwith a negative drift and sampled 100 points along each path.
The drifts and volatilities of each Brownianmotion were randomly

chosen from uniform distributions. We then ‘‘demeaned’’ the
data and performed a singular value decomposition on the data
matrix as would be done in estimating the temporal trend κt in
Lee–Carter. After repeating the experiment 1000 times we find
that according to this matrix decomposition the first singular
value, on average, accounted for 99.2% of the variability in the
data! Reminding ourselves that this implies that a model with
one source of randomness explains 99.2% of the variability, it
clearly does not align with the fact that the 11 Brownian motions
were generated independently. The only thing these Brownian
motions have in common is they all have negative drift, however,
following the reasoning of Lee and Carter (1992) we might be
led to infer that the first singular value is very informative and
we can model all the data by simply modeling this first singular
value.

Many papers since Lee and Carter (1992) have tried to improve
upon their model by adding more principal components, or a
cohort effect, or any range of similar statistical quantities, but
they all model the level, and dependence between age groups is
modeled using a downward trending temporal trend κt . Booth
et al. (2006) modify the Lee–Carter model by optimally choosing
the time period over which to fit the model and adjust the
state variable, κt to fit the total number of deaths in each year.
DeJong and Tickle (2006) reduce the number of parameters in
Lee–Carter to model mortality rates as a smoothed state space
model. Yang et al. (2010) use multiple principal components to
expand the Lee–Carter model. Chen and Cox (2009) introduce
jumps into modeling the state variable, found in Lee and Carter
(1992), to increase goodness of fit measures and price insurance
linked securities. Deng et al. (2012) use a more advanced jump
diffusion model to fit the temporal state variable and Li et al.
(2011) identify non-linearities in the temporal state variable. A
cohort effect,which incorporates the year of birth into themodel, is
added to the Lee–Carter model in Renshaw and Haberman (2006).
In Booth et al. (2006) the authors compare five variants of the
Lee–Carter model with data from several countries. Each of these
models are interesting, however all suffer from the same design
vulnerability as Lee and Carter (1992) described below, in that they
all model the level of log mortality rates and hence misrepresent
the temporal dependence structure ofmortality rates by age group.

1.3. Outline and contribution

In this paper we build upon the idea of bilinear modeling of
age and time from Lee and Carter (1992), however we propose a
model that looks at mortality data from a different perspective.
We show that by first performing a simple transformation of the
data prior to modeling, the subsequent modeling vastly improves
our ability to replicate the dynamics of mortality rates through
time. This improvement applies not only to the original Lee–Carter
model, but also can be used to improve each of the extensions
and variants described previously. For forecasting mortality rates
we also propose a Normal Inverse Gaussian based mortality index
model that is extremely easy to calibrate, has relatively few
parameters and performs extremely well. We document this by
comparing ourmodel to several othermodels using severalmetrics
found in literature.

This new model we propose avoids the common problem
of modeling log mortality levels. Our model is similar to the
Lee–Carter model, however we model changes in log mortality
rates rather than levels of log mortality rates. By considering the
changes we are able to more accurately capture the dependence
structure between ages of mortality and use this to construct a
more encompassing model. Referring back to the independent
Brownian motions experiment described above, we performed a
singular value decomposition on the matrix of differences through
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