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a b s t r a c t

This paper considers the pricing of European call options written on pure endowment and deferred life
annuity contracts, also known as guaranteed annuity options. These contracts provide a guaranteed value
at the maturity of the option. The contract valuation is dependent on the stochastic interest rate and
mortality processes. We assume single-factor stochastic square-root processes for both the interest rate
and mortality intensity, with mortality being a time-inhomogeneous process. We then derive the pricing
partial differential equation (PDE) and the corresponding transition density PDE for options written on
the pure endowment and deferred annuity contracts. The general solution of the pricing PDE is derived
as a function of the transition density function. We solve the transition density PDE by first transforming
it to a system of characteristic PDEs using Laplace transform techniques and then applying the method of
characteristics. Once an explicit expression for the density function is found, we then use sparse grid
quadrature techniques to generate European call option prices on the pure endowment and deferred
annuity contracts. This approach can easily be generalised to other contracts which are driven by similar
stochastic processes presented in this paper. We test the sensitivity of the option prices by varying
independent parameters in our model. As option maturity increases, the corresponding option prices
significantly increase. The effect of mispricing the guaranteed annuity value is analysed, as is the benefit
of replacing the whole-life annuity with a term annuity to remove volatility of the old age population.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

In this paper we derive techniques for pricing deferred annuity
and pure endowment options that can be used for managing
longevity risk in life insurance and annuity providers’ portfolios.
Analytical techniques for deriving the joint interest and mortality
rate probability density function are drawn from Chiarella and
Ziveyi (2011), where the dynamics of the underlying security
evolve under the influence of stochastic volatility. Given our time-
inhomogeneous mortality process, we use sparse grid quadrature
methods to solve option prices under the risk-neutral measure.

Insurance companies and annuity providers are increasingly ex-
posed to the risk of ever improvingmortality trends across all ages,
with a greater portion of survivors living beyond 100 years (Car-
riere (1994), Currie et al. (2004) and CMI (2005) among others).
Such mortality improvements, coupled with the unavailability of
suitable hedging instruments, pose significant challenges to an-
nuity providers seizing from the risk of longer periods of annu-
ity payments than initially expected. At present mortality risk is
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non-tradable (Blake et al., 2006) and there is no market to hedge
these risks other than reinsurance. Blake and Burrows (2001) high-
light that annuity providers have been trying to hedge mortality
risk using costly means such as the construction of hedged port-
folios of long-term bonds (with no mortality risk). The hedging of
both the interest rate and longevity risks is important to annuity
providers, and the inability to purchase long-term bonds also hin-
ders the annuity providers ability to hedge the interest rate risk,
although there are a greater range of interest rate hedging meth-
ods and instruments than those for longevity risk. In this paper we
focus on longevity risk. Due to the long-term nature of life annuity
contracts, the development of an active market where longevity
risk can easily be priced, traded and hedged, requires more ad-
vanced pricing and hedging methods. A number of securities that
can make up this market have already been proposed in the litera-
ture, and these include longevity bonds, mortality derivatives, se-
curitised products among others (Bauer, 2006b; Blake et al., 2006).

Blake et al. (2006) and Bauer (2006a,b) demonstrate that, if
mortality risk can be traded through securities such as longevity
bonds and swaps, then the techniques developed in financial mar-
kets can be adapted and implemented for mortality risk. A number
of papers have also developedmodels for pricing guaranteed annu-
ity options. Milevsky and Promislow (2001) develop algorithms for
valuingmortality contingent claims by taking the underlying secu-
rities as defaultable coupon paying bonds with the time of death
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as a stopping time. Boyle and Hardy (2003) use the numeraire ap-
proach to value options written on guaranteed annuities. They de-
tail the challenges experienced in the UK where long-dated and
low guaranteed rates were provided relative to the high prevail-
ing interest rates in the 1970s. Interest rates fell significantly in
the 1990s, leading to sharp increases in the value of guaranteed
contracts, and this had a significant impact on annuity providers’
profitability.

A significant number of empirical studies have been presented
showing that mortality trends are generally improving and the
future development of mortality rates are uncertain and require
stochastic models. Proposed stochastic models include Milevsky
and Promislow (2001), Dahl et al. (2008) and Biffis (2005). A num-
ber of stochastic mortality models have been motivated by inter-
est rate term-structure modelling literature (Cox et al., 1985; Dahl
et al., 2008; Litterman and Scheinkman, 1991) as well as stochastic
volatility models such as that proposed in Heston (1993).

The main aim of this paper is to devise a novel numerical ap-
proach for the pricing and hedging of deferred mortality contin-
gent claims with special emphasis on pure endowment options
and deferred immediate annuity options. We start off by devis-
ing techniques for pricing deferred insurance contracts, which are
the underlying assets. Analytical solutions can be derived for pure
endowment contracts using the forward measure approach; how-
ever, this is not possible for deferred immediate annuities where
analytical approximation techniques have mostly been used as in
Singleton and Umantsev (2002) when valuing options on coupon
paying bonds. Having devised models for the underlying securi-
ties, we then present techniques for valuing European style options
written on these contracts.

We assume that the interest rate dynamics is driven by
a single-factor stochastic square-root process, while the time-
inhomogeneous mortality dynamics is a one-factor version of the
model proposed in Biffis (2005). The long-term mean reversion
level of the mortality process is a time-varying function following
theWeibullmortality law. This provides a referencemortality level
for each age in a cohort. The model definition guarantees positive
mortality rates. Although the mortality intensity can fall below
our reference rate, careful selection of the parameters limits this
occurring.

We use hedging arguments and Ito’s Lemma to derive a partial
differential equation (PDE) for options written on the deferred in-
surance contracts. We also present the backward Kolmogorov PDE
satisfied by the two stochastic processes under consideration. We
present the general solution of the pricing PDE by using Duhamel’s
principle. The solution is a function of the joint probability den-
sity function, which is also the solution of the Kolmogorov PDE.
We solve the transition density PDE with the aid of Laplace trans-
form techniques, thereby obtaining an explicit expression for the
joint transition density function. Using the explicit density func-
tion, we then use sparse grid quadrature methods to price options
on deferred insurance contracts.

While Monte Carlo simulation techniques are effective for
option pricing, the analytic solution of the joint density function
provides valuable insight into longevity risk. From the analytic
solution one can easily derive expressions for thehedge ratios, such
as the option price sensitivity with respect to the interest rate and
mortality processes. The framework can be extended to multiple
interest and mortality risk factors, with only a small increase in
computation requirements.

The remainder of this paper is organised as follows: Section 2
presents the modelling framework for the interest rate and mor-
tality rate processes. We then provide the option pricing frame-
work in Section 3. It is in this section where we derive the option
pricing PDE and the corresponding backward Kolmogorov PDE for
the density function. With the general solution of the pricing PDE

presented, we then outline a step-by-step approach for solving the
transition density PDE using Laplace transform techniques. The ex-
plicit expressions for the deferred pure endowment and deferred
annuity contracts together with their corresponding option prices
are presented in Section 4. All numerical results are presented in
Section 5. Section 6 concludes the paper. Where appropriate, the
derivations and proofs are included to the appendices.

2. Modelling framework

The intensity-based modelling of credit risky securities has a
number of parallels with mortality modelling (Lando, 1998; Biffis,
2005). We are interested in the first stopping time, τ , of the
intensity process µ(t; x), for a person aged x at time zero. Starting
with a filtered probability space (Ω , F , F, P), where P is the real-
world probability measure. The information at time-t is given by
F = G ∨ H. The sub-filtration G contains all financial and actuarial
information except the actual time of death.

There are two G-adapted short-rate processes, r(t) andµ(t; x),
representing the instantaneous interest and mortality processes
respectively. The sub-filtration H is the σ -algebra with death in-
formation. Let N(t) := 1τ≤t be an indicator function, if the com-
pensator A(t) =

 t
0 µ(s; x)ds is a predictable process of N(t), then

dM(t) = dN(t)−dA(t) is aP-martingale, where dA(t) = µ(t; x)dt .
There also exists another measure where dM(t) is a Q-

martingale, under which the compensator becomes dA(t) = µQ

(t; x)dt , with µQ (t; x) = (1 + φ(t))µ(t; x) and φ(t) ≥ −1. The
predictable processφ(t) represents amarket price of idiosyncratic,
or individual, mortality risk of the insurance contract. The idiosyn-
cratic risk is important to the annuity provider, but for the market
this risk can be diversified, and we assume φ(t) = 0 in this pa-
per. In the absence of market data, we make the usual simplifying
assumption that under the Q-measure interest andmortality rates
are independent; we do not assume a change in the economic con-
ditions to affect the risk premium in longevity securities.

Proposition 2.1. In the absence of arbitrage opportunities there
exists an equivalent martingale measure Q where C(t, T , r, µ; x) is
the t-value of an option contractwith a pay-off function, P(T , r, µ; x),
at time-T . The payment of P(T , r, µ; x), which is a G-adapted
process, is conditional on survival to the start of the period T, otherwise
the value is zero. The time t-value of the option can be represented as

C(t, T , r, µ; x) = EQ

e−

 T
t r(u)duP(T , r, µ; x)1τ>T |Ft


= 1τ>tEQ


e−

 T
t [r(u)+µ(u;x)]duP(T , r, µ; x)|Gt


. (2.1)

Proof. The law of iterated expectations can be used to show this;
see Bielecki and Rutkowski (2002) or Biffis (2005) for detail. �

In our framework, time-T is always the option maturity age. If
P(T , r, µ; x) ≡ 1, then our contract resembles a credit risky zero
coupon bond. In actuarial terms, this is a pure endowment contract
written at time-t that receives 1 at time T if the holder is still alive.
If P(T , r, µ; x) is the value of a stream of payments starting at T ,
conditional on survival, then we are pricing a deferred immediate
annuity. The contract value, P(T , r, µ; x), can also take the form of
an option pay-off. In this scenario, the strike price, K , represents a
guaranteed value at time-T on an endowment or annuity contract.

One approach to solving Eq. (2.1) is to use a forward measure
approach. If we use P(T , r, µ; x) as numeraire, we can rewrite (2.1)
as

C(t, T , r, µ; x) = 1τ>tP(t, r, µ; x)EQ P
[P(T , r, µ; x)|Ft ] (2.2)
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