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a b s t r a c t

With motivation from Tang et al. (2011), in this paper we consider a tractable multivariate risk structure
which includes the Sarmanov dependence structure as a special case.Wederive several asymptotic results
for both the sum and the product of such risk and then present three applications related to actuarial
mathematics.
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1. Introduction

Many modern actuarial tasks such as quantification of large
risks and aggregated risk, estimation of ruin probabilities in the
presence of financial risks, or reinsurance pricing accounting for
both claims and expenses strongly rely on the use of multivariate
extreme value theory. Typically, the adequacy of the probabilistic
models employed by the actuaries is determined by their flexibility
to allow for the dependence among risks. Most of classical insur-
ance models assume independence of risks, a phenomenon which
is rarely observed in practical actuarial tasks. The role of the de-
pendence among risks is crucial, especially when modelling the
impact of large risks. Dependence modelling and in particular that
of large risks has been the topic of several contributions such as
Goovaerts et al. (2005), Denuit et al. (2006), Li et al. (2010), Asimit
et al. (2011), Chen (2011), Haug et al. (2011), Kortschak (2011),
Manner and Segers (2011), Tang et al. (2011), and Chen and Yuen
(2009, 2012) among many others.

Asimit et al. (2011) successfully demonstrates the role of
asymptotic dependence and asymptotic independence in actuar-
ial modelling. As shown therein, multivariate risks which exhibit
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asymptotic dependence imply in general different results com-
pared to multivariate risks which have asymptotic independent
components. Tractable multivariate distributions like the Fairlie–
Gumbel–Morgenstern (FGM) ones exhibit asymptotic indepen-
dence.

In various risk models employed by actuaries two related tasks
are the asymptotic analysis of aggregated risk, and the asymp-
totic quantification of the effect random scaling (or deflation) of
risks. Since the empirical data always support the fact that risks
are stochastically dependent, aggregation of dependent risks has
become recently a key topic for insurance, finance, and risk man-
agement. Recent results of Mitra and Resncik (2009) and Asimit
et al. (2011) pave the way for the analysis of the impact of a single
large risk to the aggregated risk.

In a mathematical framework, if X0, . . . , Xn are non-negative
randomvariables (rv’s)with distribution functions (df’s) F0, . . . , Fn,
then the aggregated risk is S =

n
i=0 Xi. In order to avoid trivial-

ity, we assume that the risks are all non-degenerate at zero. Large
values of S mean large financial risks for the company, and there-
fore the actuarial interest focuses mainly on the quantification of
the probability of such large values, i.e., P (S > u) where the level
u reaches some extreme point.

In another context, X0 can be considered as the base risk,
whereas X1, . . . , Xn as random deflators/inflators. Of actuarial
interest is the asymptotic tail behaviour of the ultimate deflated
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risk (u → ∞)

P (Z > u) , with Z = X0

n
i=1

Xi. (1.1)

For independent risks recent results in this direction are derived in
Hashorva et al. (2010).

The main goal of this paper is to introduce a tractable class of
dependent risks which allows for explicit calculation of various
actuarial quantities of interest. Themotivation for introducing such
a class of risks comes from the simple structure of multivariate
FGM df’s. By definition, a (n + 1)-dimensional random vector X =

(X0, . . . , Xn) has a multivariate FGM df Q with marginal df’s
F0, . . . , Fn if

Q (x0, . . . , xn) =

n
i=0

Fi(x)


1 +


0≤i<j≤n

θijFi(xi)Fj(xj)


,

xi ∈ [0, x̂i], 0 ≤ i ≤ n, (1.2)

where Fi := 1 − Fi, and θij’s are some real constants which satisfy
certain restrictions so that Q is a df. Here x̂i := sup{x ∈ R : Fi(x) <
1} stands for the upper endpoint of the marginal df Fi.

Throughout the paper we assume that the risks are non-
negative, thus Fi has support on [0,∞).

The tractability of X with df Q given by (1.2) relates to the
fact that Q is obtained by the product distribution Q ∗

=
n

i=0
Fi

in fact Q ∗(x0, . . . , xn) =

n
i=0 Fi(xi)


. By a closer inspection, it

follows that

Q (x0, . . . , xn)

=

 x0

0
· · ·

 xn

0


1 +


0≤i<j≤n

θij(1 − 2Fi(si))(1 − 2Fj(sj))


×Q ∗(ds0, . . . , dsn)

holds for any xi ∈ [0, x̂i], 0 ≤ i ≤ n. The larger class of multi-
variate Sarmanov distributions is introduced by substituting above
1 − 2Fi by some kernel φi; some insurance applications of Sar-
manov distributions are illustrated in Tang et al. (2011) and Yang
and Wang (2012).

Motivated by the underlying relationship between Q and the
product df Q ∗

=
n

i=0 Fi, in this paper we consider a wider class
of multivariate df’s which are absolutely continuous with respect
to a product df—we refer to that as AC-product class. Specifically,
the members of this class are all absolutely continuous df’s with
respect to Q ∗.

It turns out that under some weak conditions the asymptotic
behaviour of the aggregated risk S and the deflated risk Z for risks
with an AC-product distribution can be derived explicitly.

Organisation of the rest of the paper: In Section 2we briefly dis-
cuss somebasic properties of AC-product distributions. Further,we
derive a novel result concerning the Sarmanov distribution, which
is the canonical example of the AC-product class. Section 3 shows
the asymptotic independence of AC-product risks, whereas Sec-
tion 4 investigates the asymptotic behaviour of the deflated risk Z
under extreme value type conditions on the marginal df’s. In Sec-
tion 5 we present three applications concerning risk aggregation,
Value-at-Risk and conditional tail expectation, and the probabil-
ity of ruin under risky investment. The proofs of all the results are
postponed to Section 6.

2. Multivariate AC-product and Sarmanov distributions

In this section we present some details on the class of AC-
product distributions and Sarmanov distributions. Hereafter X =

(X0, X1, . . . , Xn) is a (n + 1)-dimensional random vector with
non-negative univariate marginal df’s Fi, 0 ≤ i ≤ n. It is not stan-
dard to write the first component of X by X0; we do this since this
component will be a reference one in the part when the products
of the components of X are discussed. Clearly, if X possesses the df
Q ∗

=
n

i=0 Fi, then the random vector X has independent com-
ponents, a situation which is often not encountered in practical
applications. Starting from this independence setup, a tractable de-
pendence structure is introduced by considering X such that its df
Q is absolutely continuous with respect to the product df Q ∗ i.e.,

Q (x0, . . . , xn) =

 x0

0
· · ·

 xn

0
η(s0, . . . , sn)Q ∗(ds0, . . . , dsn),

xi ∈ [0, x̂i], 0 ≤ i ≤ n, (2.1)

where η(·) is a non-negative measurable function, i.e., if we write
(2.1) as

dQ = η · dQ ∗,

we see that η is the Radon–Nikodym derivative. Throughout this
paper

X∗

0 , . . . , X
∗

n

are independent rv’s with df’s Fi, 0 ≤ i ≤ n, respectively, and thus
joint df Q ∗. We refer to Q as an AC-product distribution. Since Q is
a proper df we shall assume that

E

η(X∗

x0 , . . . , X
∗

xn)

< ∞ (2.2)

almost surely with respect to Q ∗ where X∗
xi = X∗

i or X∗
xi = xi with

xi in the support of Fi. Further, we suppose that

E

η(X∗

0 , . . . , X
∗

n )


= 1 (2.3)

holds. Clearly, (2.2) is satisfied when η(·) is a bounded function.
The Sarmanov distributions mentioned in the Introduction are

obtained when

η(x0, . . . , xn) = 1 +


0≤k<l≤n

θklφk(xk)φl(xl), (2.4)

with φ0, . . . , φn some given real-valued kernels, and θkl, 0 ≤ k <
l ≤ n non-negative constants.

In order for such η(·) to define a proper df, we shall impose the
following assumptions on the kernels:

A1. φi, 0 ≤ i ≤ n are not identical to 0 in [0, x̂i];
A2. for all xi ∈ [0, x̂i], 0 ≤ i ≤ nwe have

0≤k<l≤n

θklφk(xk)φl(xl) ≥ −1 (2.5)

almost surely with respect to Q ∗;
A3. for any 0 ≤ i ≤ nwe have

E {φi(Xi)} = 0. (2.6)

Apart form the choiceφi = 1−2Fi which leads to the FGMdistribu-
tion, another common specification of the kernels isφi(s) = gi(s)−
E {gi(Xi)} , s > 0, for some function gi such that E {gi(Xi)} < ∞.

We may consider for instance gi(s) = exp(−s), or gi(s) =

sαi , αi ∈ R, provided that E

Xαii


< ∞ and x̂i < ∞. The next

lemma shows that the kernels need to obey certain asymptotic
restrictions.
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