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a b s t r a c t

Distortion risk measures summarize the risk of a loss distribution by means of a single value. In fuzzy
systems, the Ordered Weighted Averaging (OWA) and Weighted Ordered Weighted Averaging (WOWA)
operators are used to aggregate a large number of fuzzy rules into a single value. We show that these
concepts can be derived from the Choquet integral, and then the mathematical relationship between
distortion risk measures and the OWA and WOWA operators for discrete and finite random variables
is presented. This connection offers a new interpretation of distortion risk measures and, in particular,
Value-at-Risk and Tail Value-at-Risk can be understood from an aggregation operator perspective. The
theoretical results are illustrated in an example and the degree of orness concept is discussed.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The relationship between two different worlds, namely risk
measurement and fuzzy systems, is investigated in this paper. Risk
measurement evaluates potential losses and is useful for decision
making under probabilistic uncertainty. Broadly speaking, fuzzy
logic is a form of reasoning based on the ‘degree of truth’ rather
than on the binary true–false principle. But risk measurement and
fuzzy systems share a common core theoretical background. Both
fields are related to the human behavior under risk, ambiguity or
uncertainty.1 The study of this relationship is a topic of ongoing
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1 The expected utility theory by von Neumann and Morgenstern (1947) was
one of the first attempts to provide a theoretical foundation to human behavior
in decision-making, mainly based on setting up axiomatic preference relations of
the decision maker. Similar theoretical approaches are, for instance, the certainty-
equivalence theory (Handa, 1977), the cumulative prospect theory (Kahneman and
Tversky, 1979; Tversky and Kahneman, 1992), the rank-dependent utility theory
(Quiggin, 1982), the dual theory of choice under risk (Yaari, 1987) and the expected
utility without sub-additivity (Schmeidler, 1989), where the respective axioms
reflect possible human behaviors or preference relations in decision-making.

research from both fields. Goovaerts et al. (2010a), for instance,
discuss the hierarchical order between risk measures and decision
principles,while Aliev et al. (2012) propose a decision theory under
imperfect information from the perspective of fuzzy systems.

Previous attempts to link risk management and fuzzy logic
approaches are mainly found in the literature on fuzzy systems.
Most authors have focused on the application of fuzzy criteria to
financial decision making (Engemann et al., 1996; Gil-Lafuente,
2005; Merigó and Casanovas, 2011), and some have smoothed
financial series under fuzzy logic for prediction purposes (Yager
and Filev, 1999; Yager, 2008). In the literature on riskmanagement,
contributions made by Shapiro (2002, 2004, 2009) regarding
the application of fuzzy logic in the insurance context must be
remarked.

In this paper we analyze the mathematical relationship be-
tween risk measurement and aggregation in fuzzy systems for dis-
crete random variables. A risk measure quantifies the complexity
of a random loss in one value that reflects the amount at risk. A key
concept in fuzzy systems applications is the aggregation operator,
which also allows to combine data into a single value. We show
the relationship between the well-known distortion risk measures
introduced by Wang (1996) and two specific aggregation opera-
tors, the OrderedWeighted Averaging (OWA) operator introduced
by Yager (1988) and the Weighted Ordered Weighted Averaging
(WOWA) operator introduced by Torra (1997).

Distortion risk measures, OWA and WOWA operators can be
analyzed using the theory of measure. Classical measure functions
are additive, and linked to the Lebesgue integral. When the
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additivity is relaxed, alternative measure functions and, hence,
associated integrals are derived. This is the case of non-additive
measure functions,2 often called capacities as it was the name
coined by Choquet (1954). We show that the link between
distortion riskmeasures andOWAandWOWAoperators is derived
by means of the integral linked to capacities, i.e. the Choquet
integral. We present the concept of degree of orness for distortion
risk measures and illustrate its usefulness.

Our presentation is organized as follows. In Section 2, risk mea-
surement and fuzzy systems concepts are introduced. The relation-
ship betweendistortion riskmeasures and aggregation operators is
provided in Section 3. An application with some classical risk mea-
sures is given in Section 4. Finally, implications derived from these
results are discussed in the conclusions.

2. Background and notation

In order to keep this article self-contained and to present the
connection between two apparently distant theories, we need to
introduce the notation and some basic definitions.

2.1. Distortion risk measures

Two main groups of axiom-based risk measures are coherent
risk measures, as stated by Artzner et al. (1999), and distortion
risk measures, as introduced by Wang (1996) and Wang et al.
(1997). Concavity of the distortion function is the key element
to define risk measures that belong to both groups (Wang
and Dhaene, 1998). Suggestions on new desirable properties for
distortion risk measures are proposed in Balbás et al. (2009), while
generalizations of this kind of risk measures can be found, among
others, in Hürlimann (2006) andWu and Zhou (2006). As shown in
Goovaerts et al. (2012), it is possible to link distortion riskmeasures
with other interesting families of risk measures developed in the
literature.

The axiomatic setting for risk measures has extensively been
developed since seminal papers on coherent risk measures and
distortion risk measures. Each set of axioms for risk measures
corresponds to a particular behavior of decisionmakers under risk,
as it has been shown, for instance, in Bleichrodt and Eeckhoudt
(2006) andDenuit et al. (2006).Most often, articles on axiom-based
risk measurement present the link to a theoretical foundation
of human behavior explicitly. For example, Wang (1996) shows
the connection between distortion risk measures and Yaari’s dual
theory of choice under risk; Goovaerts et al. (2010b) investigate
the additivity of risk measures in Quiggin’s rank-dependent utility
theory; and Kaluszka and Krzeszowiec (2012) introduce the
generalized Choquet integral premium principle and relate it to
Kahneman and Tversky’s cumulative prospect theory.

Basic risk concepts are formally defined below. Let us set up the
notation.

Definition 2.1 (Probability Space). A probability space is defined
by three elements (Ω,A,P ). The sample space Ω is a set of the
possible events of a random experiment, A is a family of the set of
all subsets ofΩ (denoted asA ∈ ℘(Ω))with aσ -algebra structure,
and the probability P is a mapping from A to [0, 1] such that
P (Ω) = 1,P (∅) = 0 and P satisfies the σ -additivity property.

A probability space is finite if the sample space is finite, i.e.
Ω = {ϖ1,ϖ2, . . . ,ϖn}. Then ℘ (Ω) is the σ -algebra, which is
denoted as 2Ω . In the rest of the article,N instead ofΩ will be used
when referring to finite probability spaces. Hence, the notationwill
be

N, 2N ,P


.

2 See Denneberg (1994).

Table 2.1
Correspondence between risk measures and distortion functions.

Risk measure Distortion function g(x)

VaRα ψα(x) =


0 if x ≤ 1 − α

1 if x > 1 − α


= 1(1−α,1](x)

TVaRα γα(x) =

 x
1 − α

if x ≤ 1 − α

1 if x > 1 − α


= min

 x
1−α , 1



Definition 2.2 (Random Variable). Let (Ω,A,P ) be a probability
space. A random variable X is a mapping from Ω to R such that
X−1 ((−∞, x]) := {ϖ ∈ Ω : X (ϖ) ≤ x} ∈ A, ∀x ∈ R.

A random variable X is discrete if X (Ω) is a finite set or a
numerable set without cumulative points.

Definition 2.3 (Distribution Function of a Random Variable). Let X
be a random variable. The distribution function of X , denoted by
FX , is defined by FX (x) := P


X−1 ((−∞, x])


≡ P (X ≤ x).

The distribution function FX is non-decreasing, right-continuous
and limx→−∞ FX (x) = 0 and limx→+∞ FX (x) = 1. The survival
function of X , denoted by SX , is defined by SX (x) := 1 − FX (x),
for all x ∈ R. Note that the domain of the distribution function and
the survival function is R even if X is a discrete random variable. In
otherwords, FX and SX are defined forX (Ω) = {x1, x2, . . . , xn, . . .}
but also for any x ∈ R.

Definition 2.4 (Risk Measure). Let Γ be the set of all random
variables defined for a given probability space (Ω,A,P ). A risk
measure is a mapping ρ from Γ to R, so ρ(X) is a real value for
each X ∈ Γ .

Definition 2.5 (Distortion Risk Measure). Let g : [0, 1] → [0, 1]
be a non-decreasing function such that g(0) = 0 and g(1) = 1
(we will call g a distortion function). A distortion risk measure
associated to distortion function g is defined by

ρg(X) := −

 0

−∞

[1 − g (SX (x))] dx +


+∞

0
g (SX (x)) dx.

The simplest distortion risk measure is the mathematical
expectation, which is obtained when the distortion function is the
identity as shown in Denuit et al. (2005). The two most widely
used distortion risk measures are the Value-at-Risk (VaRα) and
the Tail Value-at-Risk (TVaRα), which depend on a parameter α ∈

(0, 1) usually called the confidence level. Broadly speaking, the
VaRα corresponds to a percentile of the distribution function. The
TVaRα is the expected value beyond this percentile3 if the random
variable is continuous. The former pursues to estimate what is
the maximum loss that can be suffered with a certain confidence
level. The latter evaluates what is the expected loss if the loss
is larger than the VaRα . Both risk measures are distortion risk
measures with associated distortion functions shown in Table 2.1.
Unlike the VaRα , the distortion function associated to the TVaRα is
concave and, then, the TVaRα is a coherent riskmeasure in the sense
of Artzner et al. (1999). Basically, this means that TVaRα is sub-
additive (Acerbi and Tasche, 2002) while the VaRα is not. Like in
the case of VaRα and TVaRα , there is a strong relationship between
the quantiles of the random variable and distortion risk measures,
as it is shown in Dhaene et al. (2012).

3 We consider TVaRα as defined in Denuit et al. (2005). That is, TVaRα(X) =

1
1−α

 1
α
VaRδ(X)dδ.
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