
Insurance: Mathematics and Economics 51 (2012) 265–270

Contents lists available at SciVerse ScienceDirect

Insurance: Mathematics and Economics

journal homepage: www.elsevier.com/locate/ime

Convex order and comonotonic conditional mean risk sharing
Michel Denuit a,∗, Jan Dhaene b

a Institut de Statistique, Biostatistique et Sciences Actuarielles - ISBA, Université Catholique de Louvain, B-1348 Louvain-la-Neuve, Belgium
b Actuarial Research Group, AFI, Faculty of Business and Economics, Katholieke Universiteit Leuven, B-3000 Leuven, Belgium

a r t i c l e i n f o

Article history:
Received September 2010
Received in revised form
April 2012
Accepted 19 April 2012

Keywords:
Stochastic orders
Pareto-optimality
Conditional expectation
Risk sharing
Comonotonicity

a b s t r a c t

Using a standard reduction argument based on conditional expectations, this paper argues that risk
sharing is always beneficial (with respect to convex order or second degree stochastic dominance)
provided the risk-averse agents share the total losses appropriately (whatever the distribution of the
losses, their correlation structure and individual degrees of risk aversion). Specifically, all agents hand
their individual losses over to a pool and each of them is liable for the conditional expectation of his
own loss given the total loss of the pool. We call this risk sharing mechanism the conditional mean risk
sharing. If all the conditional expectations involved are non-decreasing functions of the total loss then
the conditional mean risk sharing is shown to be Pareto-optimal. Explicit expressions for the individual
contributions to the pool are derived in some special cases of interest: independent and identically
distributed losses, comonotonic losses, and mutually exclusive losses. In particular, conditions under
which this payment rule leads to a comonotonic risk sharing are examined.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction and motivation

Loss sharing mechanisms have been studied for decades in the
economics and actuarial literatures. The pioneering work by Borch
(1960, 1962) considered equilibrium in a reinsurance market.
Under appropriate conditions (including that agents are expected
utility maximizers and have the same probability on the state
space), this author established that any Pareto-optimal loss sharing
mechanism is equivalent to a pool arrangement, i.e. all the agents
hand their individual losses over to a pool and agree on some
rule as to how the total pooled loss has to be divided amongst
agents. This fundamental result explains why comonotonicity
plays a central role in the study of Pareto-optimality of risk sharing
mechanisms, as each component of a comonotonic random vector
is (almost surely) equal to a non-decreasing function of the sum of
all of its components.

After Borch (1962) established that agents’ optimal risk sharing
depends only on aggregate loss, Landsberger and Meilijson (1994)
have shown that Pareto-optima are comonotonic if agents’ pref-
erences agree with second degree stochastic dominance. Specifi-
cally, Landsberger and Meilijson (1994) provided an algorithm to
construct an improvement of any non-comonotonic risk allocation
in the discrete case. This result has been extended to the general
case by Dana andMeilijson (2003) and Ludkovski and Rüschendorf
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(2008). In this paper, we consider the particular conditional mean
risk sharing rule andwe investigate its comonotonicity and Pareto-
optimality. More precisely, we show that whatever the risks faced
by decision-makers, there is always amutually beneficial risk pool-
ing mechanism with respect to second degree stochastic domi-
nance. A noteworthy feature of the analysis conducted in this paper
is that risk sharing remainsmutually beneficial even if the loss ran-
dom variables are (positively) correlated. This result is obtained by
a standard reduction argument involving conditional expectations,
that can be found, e.g., in Dana and Meilijson (2003). In some spe-
cial cases, explicit expressions for the individual contributions to
the pool are derived. We study several particular cases where the
risk sharing based on conditional expectations leads to a comono-
tonic allocation. We also further stress the importance of comono-
tonicity in the context of Pareto-optimal risk sharing schemes.

Let us briefly describe the contents of this paper. In Section 2,
the definition of the convex order is recalled, and some of its ba-
sic properties are presented. Section 3 introduces risk sharing and
related notions. In Section 4, we define the conditional mean risk
allocation and stress the importance of comonotonicity for estab-
lishing Pareto-optimality. It is shown that risk-averse decision-
makers can always reduce their respective risks by pooling them
together. The result guarantees the existence of a mutually bene-
ficial risk exchange. When comonotonic, that risk exchange turns
out to be Pareto-optimal. We study the respective contributions of
each participant to the pool and establish conditions under which
those participants bringing larger losses have to contribute more
to the pool, as should hold for any reasonable risk sharing mecha-
nism. In general, the conditionalmean risk sharing rule can only be

0167-6687/$ – see front matter© 2012 Elsevier B.V. All rights reserved.
doi:10.1016/j.insmatheco.2012.04.005

http://dx.doi.org/10.1016/j.insmatheco.2012.04.005
http://www.elsevier.com/locate/ime
http://www.elsevier.com/locate/ime
mailto:denuit@stat.ucl.ac.be
mailto:michel.denuit@uclouvain.be
mailto:jan.dhaene@econ.kuleuven.ac.be
http://dx.doi.org/10.1016/j.insmatheco.2012.04.005


266 M. Denuit, J. Dhaene / Insurance: Mathematics and Economics 51 (2012) 265–270

applied if we know the conditional distributions of the individual
risks, given the total pooled loss. This requires knowing the joint
distribution of the individual risks to be pooled. However, there are
situations where a weaker form of knowledge is sufficient to apply
our conditional mean risk allocation rule. Examples of such situ-
ations are given where conditions under which the proposed risk
sharing rule produces comonotonic individual payments are also
studied. Some particular cases are examined in Section 4: indepen-
dent and identically distributed losses, comonotonic losses, mu-
tually exclusive losses, and independent losses with log-concave
densities.

Henceforth, all the equalities between random variables and
random vectors are assumed to hold almost surely, unless stated
otherwise.

2. Convex order

Let X and Y be two random variables such that

E[g(X)] ≤ E[g(Y )] for all convex functions g : R → R, (2.1)

provided the expectations exist. Then X is said to be smaller than
Y in the convex order (denoted as X ≼CX Y ). Now, X is said to
be strictly smaller than Y in convex order, which is denoted as
X ≺CX Y , if X ≼CX Y holds true and X and Y are not identically
distributed.

The stochastic inequality X ≼CX Y intuitively means that X and
Y have the same magnitude (as E[X] = E[Y ] holds) but that Y is
more variable than X . For instance, the variance of Y is larger than
the variance of X . For a thorough description of the convex order
and its applications in an actuarial context, we refer the reader, e.g.,
to Denuit et al. (2005).

An important characterization of ≼CX is as follows. The random
variables X and Y satisfy X ≼CX Y if, and only if, there exist two
random variablesX andY , defined on the same probability space,
such thatX and X (resp.Y and Y ) are identically distributed, and

E[Y X] = X . (2.2)

More generally, whatever the random variable (or random
vector) Z ,

E[X |Z] ≼CX X . (2.3)

The economic intuition behind (2.3) is that averaging a loss (i.e.,
taking a conditional expectation of it) decreases the risk involved
(in the sense of convex order). Applications of (2.2)–(2.3) to
actuarial science are described in Denuit and Vermandele (1998,
1999). See also Leitner (2004, 2005) for a use of (2.2) in connection
with riskmeasures andDhaene et al. (2002a,b) for an application of
(2.3) in connection with (comonotonic) approximations for sums
of non-independent random variables.

The convex order can also be characterized by means of Tail-
VaR risk measures. Recall that the Value-at-Risk (or VaR) for a risk
X with distribution functions FX is defined as

VaR[X; p] = F−1
X (p) = inf{x ∈ R|FX (x) ≥ p}, 0 < p < 1.

The Tail-VaR at probability level p is then defined as

TVaR[X; p] =
1

1 − p

 1

p
VaR[X; ϵ] dϵ.

Then, X ≼CX Y if, and only if, E[X] = E[Y ] and TVaR[X; p] ≤

TVaR[Y ; p] holds for all p. See, e.g., Denuit et al. (2005). We will
use this characterization of convex order in the proof of our main
result. Notice that X ≺CX Y implies that there exists a probability
level p0 ∈ (0, 1) such that TVaR[X; p0] < TVaR[Y ; p0].

3. Risk sharing

3.1. Definitions

Consider n decision-makers (economic agents), numbered i =

1, 2, . . . , n. Each of them faces a possible risk (or loss), denoted by
Xi. No particular assumption is made about the distribution of the
random vector X = (X1, X2, . . . , Xn).

Definition 3.1 (Risk Sharing Scheme). Consider a portfolio of risks
represented by the random vector X = (X1, X2, . . . , Xn). A risk
sharing (or risk allocation) scheme for X is a random vector
(h1(X), h2(X), . . . , hn(X)) where the (measurable) functions hi :

Rn
→ R are such that

n
i=1

hi (X) =

n
i=1

Xi. (3.1)

In the end, each agent will pay (h1(x), h2(x), . . . , hn(x)) where
x is the observed realization of X . The condition (3.1) is called the
full risk allocation condition. Consider n economic agents facing
total risk

S =

n
i=1

Xi. (3.2)

In the sequel we will exclusively use the notation S for the total
risk (3.2) of the portfolio X = (X1, X2, . . . , Xn). The risk sharing
scheme characterized by (h1, h2, . . . , hn) allocates the total risk
S to the different agents. The i-th agent bears the risk hi(X), i =

1, 2, . . . , n. Notice that we allow the hi to be depending on (the
distribution of) X , as it will be the case for the conditional mean
risk allocation discussed in the next section.

An important subclass of risk allocations consists of

(h1 (X) , h2 (X) , . . . , hn (X)) = (g1 (S) , g2 (S) , . . . , gn (S))

for some functions g1, g2, . . . , gn : R → R. We will call a risk
allocation scheme fulfilling this property a risk pooling scheme.

3.2. Pareto-optimality

In this paper,we study Pareto optimal risk sharing schemes. The
following definition is in line with Dana and Meilijson (2003).

Definition 3.2 (Pareto Optimal Risk Sharing Schemes). A risk
sharing scheme (h⋆

1(X), h⋆
2(X), . . . , h⋆

n(X)) for X is Pareto-optimal
if there exists no risk sharing scheme (h1(X), h2(X), . . . , hn(X))
for X such that the stochastic inequalities

hi (X) ≼CX h⋆
i (X)

hold for i = 1, 2, . . . , n, with at least one of these convex order
inequalities being strict.

Hence, we have that a risk sharing scheme is Pareto-optimal if
no agent can be made strictly better off (in the sense of convex
order) without worsening the situation of another agent. Notice
thatwe define here better in terms of convex order. In the expected
utility paradigm, one has that a risk sharing scheme is Pareto-
optimal if there exists no risk sharing scheme that increases the
expected utility of all (risk-averse assumed) agents, with a strict
increase for at least one of them.

Remark 3.3. Note that the convex order naturally appears in the
context of Pareto-optimality, because of the condition (3.1) which
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