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a b s t r a c t

A risk process that can beMarkovised is conditioned on ruin.We prove that the process remains aMarkov
process. If the risk process is a PDMP, it is shown that the conditioned process remains a PDMP. For many
examples the asymptotics of the parameters in both the light-tailed case and the heavy-tailed case are
discussed.
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1. Introduction

Consider a risk model {Xt} on a probability space (Ω,F , P)
modelled by a piecewise deterministic Markov process (PDMP) on
a state space E ∪ {∆}; see Davis (1984), Davis (1993), Dassios and
Embrechts (1989), Rolski et al. (1999) or Schmidli (1992) for an
introduction. We assume that all processes have cadlag paths. The
state ∆ is absorbing and we call it the state of ruin. We define the
time of ruin as
τ = inf{t ≥ 0 : Xt = ∆}
and the ruin probability as ψ(x) = Px[τ < ∞]. Here Px denotes
the measure with Px[X0 = x] = 1. A main example is the classical
risk process, see Section 3, where τ may be defined as τ = inf{t ≥
0 : Xt < 0}. In our modelling E = [0,∞) and we identify (−∞, 0)
with∆.
Our main interest in this paper will be to consider the process

under the conditional measure
P̃[A] = P[A | τ <∞].
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A similar quantity had earlier been considered for special cases by
Asmussen (1982), Asmussen and Klüppelberg (1996) and Schmidli
(1999a). In these papers weak convergence of the measures P̃u as
u → ∞ is considered. The result is, that in the small claim case –
i.e., that enough exponential moments exist – the claim intensity is
increased and the claim sizes increase in stochastic order, such that
the drift becomes negative. This change is uniform and holds for all
claims happening as long the surplus is large enough; i.e., infinite.
In the large claim case, intensity and claim sizes asymptotically do
not change. Suddenly, a huge claim arrives that will lead to ruin.
Whereas the small claim case is understandable – ruin is triggered
by more and larger claims than usual – it seems strange that in the
large claim case the measures conditioned and not conditioned on
ruin asymptotically do not differ until the time of ruin. This is a
phenomenon due to weak convergence. The weight of the claims
leading to ruin immediately is only changed slightly but theweight
put to large values is not negligible for the mean value; see also
Theorem 2. Note that, unless ruin occurs almost surely P̃ and P are
not equivalent. Indeed, P̃[τ < ∞] = 1 > P[τ < ∞]. However,
on Ft the two measures are equivalent with the Radon–Nikodym
derivative d̃Pu|Ft /dPu|Ft = ψ(u)

−1E[1τ<∞ | Ft ].
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In this paper we want to investigate the process conditioned
on ruin for a finite initial capital. We will show that it remains a
PDMP under the measure P̃ and we will determine the parameters
in terms of the ruin probability ψ(x). Note that ψ(x) usually has
to be calculated numerically. We will consider several examples
of risk processes in this paper. Because no closed-form expression
for ψ(x) is known in most cases, we will discuss mainly P̃ for
large initial capital u, i.e. in the limit as u → ∞. In the Cramér
case we find as in Asmussen (1982), that P̃u tends to the measure
normally used to determine the ruin probabilities, see Rolski et al.
(1999). For the subexponential case we find as in Asmussen and
Klüppelberg (1996) that P̃u tends to P. For the application in
practice, for small initial capital one will have to use numerical
results or statistical inference to determine the parameters. If, as in
the small claim case, the difference to the unconditioned process is
large, estimationwill yield amodel tending to−∞, and the insurer
will change the premium. If the conditioned and unconditioned
processes are hard to distinguish, there is no chance to prevent
ruin. Since ruin will be caused by a rare event, the surplus process
will look well even in the case where the process tends to−∞. In
a last section, we show that the results can be applied for jump-
diffusion processes as well.
In order to avoid trivialities, we assume that 0 < ψ(x) < 1 for

all x ∈ E. Points withψ(x) = 0 are not interesting and points with
ψ(x) = 1 can be identified with∆.

2. PDMPs conditioned on ruin

We start by showing that a Markov process remains a Markov
process under the measure P̃. The following result holds for any
Markov process with absorbing state∆.

Lemma 1. Let {Xt} be a (strong) Markov process under the measure
P. Then {Xt} is a (strong) Markov process under the measure P̃.

Proof. Fix t > 0 and let B be a Borel set of E ∪ {∆} and B̃ be a Borel
set of (E ∪ {∆})[0,t]. Then

Ẽ[P̃[Xt+s ∈ B | Xt ]; {Xv : 0 ≤ v ≤ t} ∈ B̃]

=
E[ P[Xt+s∈B,τ<∞|Xt ]P[τ<∞|Xt ]

; {Xv : 0 ≤ v ≤ t} ∈ B̃, τ <∞]

P[τ <∞]

=
E[ P[Xt+s∈B,τ<∞|Ft ]P[τ<∞|Ft ]

; {Xv : 0 ≤ v ≤ t} ∈ B̃, τ <∞]

P[τ <∞]

=
E[ P[Xt+s∈B,{Xv :0≤v≤t}∈B̃,τ<∞|Ft ]P[τ<∞|Ft ]

; τ <∞]

P[τ <∞]
= Ẽ[P̃[Xt+s ∈ B, {Xv : 0 ≤ v ≤ t} ∈ B̃ | Ft ]]

= P̃[Xt+s ∈ B, {Xv : 0 ≤ v ≤ t} ∈ B̃].

This shows that P̃[Xt+s ∈ B | Ft ] = P̃[Xt+s ∈ B | Xt ]. Thus {Xt}
is a Markov process. If we replace t by a finite stopping time, the
strong Markov property can be shown similarly. �

Let us now consider a PDMP {Xt} on a subset E of an Euclidean
space Rd with vector-field χ(x), jump intensity λ(x) and jump
measure Q (x, ·). Note that jumps may be caused by reaching the
boundary ∂E of E. The integral curves connected to the vector-field
χ , thatmeans the deterministic paths between jumps, are denoted
by φ(x, t) with φ(x, 0) = x. That is, ∂

∂t f (φ(x, t)) = (χ f )(φ(x, t))
for all continuously differentiable functions f .
Let us first discuss the ruin probability. The generator A of the

PDMP is given by

Af (x) = χ f (x)+ λ(x)
[∫
E∪{∆}

f (y)Q (x, dy)− f (x)
]
,

for all functions f in the domainD(A) of the generator.We assume
that τ is a stopping time. In particular, this will be the case if
the filtration {Ft} is right continuous. We will not discuss these
technical problems in this paper.
If the ruin probabilityψ(u) is absolutely continuous, then it fol-

lows easily that Aψ(x) = 0 with boundary condition ψ(∆) = 1.
If jumps can be caused by reaching a boundary point, then the
boundary condition ψ(x) =

∫
E∪{∆} ψ(y)Q (x, dy) has to hold for

all x ∈ ∂∗E, the set of points x ∈ ∂E that can be reached from the
inside of E within finite time. If the jump measure Q and the in-
tensity have nice properties it is possible to show the above equa-
tions directly. There is another possible approach. Suppose there
is a bounded function f (x) that is absolutely continuous along in-
tegral paths and satisfies Af (x) = 0, f (∆) = 0 and the boundary
condition f (x) =

∫
E∪{∆} f (y)Q (x, dy) for all x ∈ ∂

∗E. Then {f (Xτ∧t)}
is a local martingale, see Davis (1984). Because f is bounded it is a
martingale, indeed. In particular, by the martingale convergence
theorem the process has to converge. In most cases considered in
the literature the process {f (Xt)} will converge to a deterministic
constant on {τ = ∞}, f∞ say. Then the martingale stopping theo-
rem gives ψ(x) = 1 − f (x)/f∞. We, therefore, assume from now
on that the ruin probability is in the domainD(A) of the generator
and therefore satisfies Aψ(x) = 0.
We now investigate the process under the measure P̃, i.e. the

measure conditioned on that ruin occurs.

Theorem 1. Under the measure P̃ the process {Xt} is a piecewise
deterministic Markov process with vector-field χ , jump intensity

λ̃(x) =
λ(x)

∫
E∪{∆} ψ(y)Q (x, dy)

ψ(x)

and jump measure

Q̃ (x, dy) =
ψ(y)Q (x, dy)∫

E∪{∆} ψ(z)Q (x, dz)
.

Proof. Since {Xt} is a strong Markov process, see Davis (1984),
we need just to prove that the assertion holds for the first jump.
The jump measure from a point x ∈ ∂∗E is verified easily. Thus
we suppose that the jump considered below is from the inside of
E. Fix an initial point x and denote the time of the first jump by
T1. Because the path until T1 is deterministic and P̃x is absolutely
continuous with respect to Px, it follows that {Xt} follows the
vector-field χ until T1. Let t be such that φ(x, s), s ≤ t does not
reach the boundary. Then for a Borel set B of E ∪ {∆}

P̃x[T1 ≤ t, XT1 ∈ B]

= ψ(x)−1
∫ t

0
λ(φ(x, s)) exp

{
−

∫ s

0
λ(φ(x, v))dv

}
×

∫
B
ψ(y)Q (φ(x, s), dy)ds.

Thus the distribution of the point after the jump depends on the
point φ(x, T1) prior to the jump only. This gives Q̃ . We need to
determine the jump intensity and to show that it is ‘‘independent’’
of the starting point x. The time of the first jump has density

f̃T1(t) = ψ(x)
−1λ(φ(x, t)) exp

{
−

∫ t

0
λ(φ(x, v))dv

}
×

∫
E∪{∆}

ψ(y)Q (φ(x, t), dy).
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