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a b s t r a c t

This paper develops a framework for developing forecasts of future mortality rates. We discuss the
suitability of six stochasticmortalitymodels for forecasting futuremortality and estimating the density of
mortality rates at different ages. In particular, the models are assessed individually with reference to the
following qualitative criteria that focus on the plausibility of their forecasts: biological reasonableness;
the plausibility of predicted levels of uncertainty in forecasts at different ages; and the robustness of
the forecasts relative to the sample period used to fit the model. An important, though unsurprising,
conclusion is that a good fit to historical data does not guarantee sensible forecasts. We also discuss
the issue of model risk, common to many modelling situations in demography and elsewhere. We find
that even for those models satisfying our qualitative criteria, there are significant differences among
central forecasts ofmortality rates at different ages and among the distributions surrounding those central
forecasts.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

The last twenty years has seen a growing range of models for
forecastingmortality. Earlywork on stochasticmodels byMcNown
and Rogers (1989) and Lee and Carter (1992) has been followed by:
• developments on the statistical foundations by, for example,

Lee andMiller (2001), Brouhns et al. (2002), Booth et al. (2002a),
Czado et al. (2005), Delwarde et al. (2007), and Li et al. (2009);
and

• the development of new stochastic models by Booth et al.
(2002a,b, 2005), Cairns et al. (2006b) (CBD), Renshaw and
Haberman (2006), Hyndman and Ullah (2007), Cairns et al.
(2009), Plat (2009) and Debonneuil (2010).

These stochasticmodels vary significantly according to a number of
key elements: number of sources of randomness driving mortality
improvements at different ages; assumptions of smoothness in
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the age and period dimensions; inclusion or not of cohort effects;
estimation method.

A number of studies have sought to draw out more formal
comparisons between a number of these models. Some of these
limit themselves to comparison of some variants of the Lee–Carter
model (Lee and Miller, 2001; Booth et al., 2002a,b, 2005).
Hyndman and Ullah (2007) compare out-of-sample forecasting
performance of the Lee–Carter model and its Lee–Miller and
Booth–Maindonald–Smith variants with a new class of multifactor
models. CMI (2005, 2006, 2007) compare the Lee–Carter, Renshaw
and Haberman and P-splines models. These types of analysis have
been extended to a wider range of models with substantially
different characteristics by the present authors; this paper is one
part of this endeavour.

Cairns et al. (2009) focused on quantitative and qualitative
comparisons of eight stochastic mortality models (see Table 1
in Section 2), based on their general characteristics and ability
to explain historical patterns of mortality. The criteria employed
included: quality of fit, as measured by the Bayes information
criterion (BIC); ease of implementation; parsimony; transparency;
incorporation of cohort effects; ability to produce a non-trivial
correlation structure between ages; robustness of parameter
estimates relative to the period of data employed.

Complementing this, Dowd et al. (2010a,b) carry out a range
of formal, out-of-sample backtesting and goodness-of-fit tests
using mortality data for English and Welsh males. They find
that some models fare better under some criteria than others,

0167-6687/$ – see front matter© 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.insmatheco.2010.12.005

http://dx.doi.org/10.1016/j.insmatheco.2010.12.005
http://www.elsevier.com/locate/ime
http://www.elsevier.com/locate/ime
mailto:A.Cairns@ma.hw.ac.uk
http://dx.doi.org/10.1016/j.insmatheco.2010.12.005


356 A.J.G. Cairns et al. / Insurance: Mathematics and Economics 48 (2011) 355–367

but that no single model can claim superiority under all the
criteria considered. In any event, different patterns of mortality
improvements in different countries means that models that are
best for one country might not be as suitable for another. Finally,
this paper focuses on the ex ante plausibility and robustness of
forecasts produced by the different models. The present paper,
therefore, focuses on the ex ante qualitative aspects of forecasts,
while the previous works (Cairns et al., 2009; Dowd et al., 2010a,b)
focus on the ex post quantitative aspects.

Building on the analyses of historical data of Cairns et al.
(2009) and Dowd et al. (2010a,b), the present paper focuses on ex
ante qualitative aspects of mortality forecasts and the distribution
of results around central forecasts. Specifically, we introduce a
number of qualitative criteria that focus on the plausibility of
forecasts made using different models.

Often in this paper, we will refer to the concept of biological
reasonableness (which was first proposed in Cairns et al., 2006a).
The concept is not intended to refer to criteria based on hard
scientific (biological or medical) facts. Instead, it is intended
to cover a wide range of subjective criteria, related to biology,
medicine and the environment. What the modeller needs to do is
look at the results and ask the question: what mixture of biological
factors, medical advances and environmental changes would have to
happen to cause this particular set of forecasts? As one example,
the upper set of projections in Fig. 4 at age 85 looks rather more
unusual than the two lower sets of projections under a particular
model. Under the upper scenario, we would have to think of
a convincing biological, medical or environmental reason why,
with certainty, age 85 mortality rates are going to deteriorate to
1960’s levels. If the modeller cannot think of any good reason why
this might happen, then she must rule out the model (at least
with its current method of calibration) on grounds of biological
unreasonableness.

Besides biological reasonableness, we also consider the issue
of the plausibility of forecast levels of uncertainty in projections at
different ages. The objective here is to judge whether or not the
pattern of uncertainty at different ages is consistent with historical
levels of variability at different ages: we can sometimes conclude
that a particular model is less plausible on the basis of forecast
levels of uncertainty.

An important additional issue concerns the robustness of
forecasts relative to the choice of sample period and age range. If
we make a small change either to the sample period (for example,
when we add in the latest mortality data) or to the age range, we
would normally expect to see, with a robust model, only modest
changes in the forecasts at all ages. Where a model is found to lack
robustness with one sample population, there is a danger that it
will lack robustness if applied to another sample population and
should, therefore, either be used with great care or not used at all.

Although application of such a wide ranging set of model
selection criteria will eliminate somemodels, wewill demonstrate
that mortality forecasting is no different from many other
modelling problems where model risk is significant: mortality
forecasters should acknowledge this fact andmake use of multiple
models rather than pretend that it is sufficient to make forecasts
based on any single model.

1.1. Plan for this paper

We will consider qualitative assessment criteria that allow us
to examine the ex ante plausibility of the forecasts generated by six
stochastic mortality models, illustrating with national population
data for England & Wales (EW) for an age group consisting of
males 60–89 years old and estimated over the years 1961–2004.
This is supplemented by a briefer discussion of forecasts for the
equivalentUS dataset.We focus onhigher ages because our current

Table 1
Formulae for six out of the original eight mortality models investigated by Cairns
et al. (2009). The functions β

(i)
x , κ

(i)
t , and γ

(i)
t−x are age, period and cohort effects,

respectively. x̄ is the mean age over the range of ages being used in the analysis. σ̂ 2
x

is the mean value of (x − x̄)2 . na is the number of ages.

Model Formula

M1 logm(t, x) = β
(1)
x + β

(2)
x κ

(2)
t

M2 logm(t, x) = β
(1)
x + β

(2)
x κ

(2)
t + β

(3)
x γ

(3)
t−x

M3 logm(t, x) = β
(1)
x + n−1

a κ
(2)
t + n−1

a γ
(3)
t−x

M5 logit q(t, x) = κ
(1)
t + κ

(2)
t (x − x̄)

M7 logit q(t, x) = κ
(1)
t + κ

(2)
t (x− x̄) + κ

(3)
t


(x − x̄)2 − σ̂ 2

x


+ γ

(4)
t−x

M8 logit q(t, x) = κ
(1)
t + κ

(2)
t (x − x̄) + γ

(3)
t−x(xc − x)

principal research interest is the longevity risk facing pensionplans
and annuity providers.

We will concentrate on six of the models discussed by Cairns
et al. (2009): these are labelled in Table 1 as M1, M2, M3, M5,
M7 and M8. Models M2, M3, M7 and M8 include a cohort effect
and these emerged in Cairns et al. (2009) as the best fitting,
in terms of BIC, of the eight models considered on the basis of
male mortality data from EW and the US for the age group under
consideration. M2 is the Renshaw and Haberman (2006) extension
of the original Lee–Carter model (M1), M3 is a special case of M2,
and M7 and M8 are extensions of the original CBD model (M5).
The original Lee–Carter and CBD models had no cohort effect, and
provide useful benchmarks for comparison with the four models
involving cohort effects. M4 is not considered any further in this
study because of its low BIC and qualitative rankings for these
datasets in Cairns et al. (2009, Table 3). (M4 focuses on identifying
the smooth underlying trend. However, this means that it is not
as good as the other models at capturing short-term deviations
from this trend.) Although M3 is a special case of M2, we include
it here because it had a relatively high BIC ranking for the US data,
and because it avoids a problem with the robustness of parameter
estimates for M2 identified by CMI (2007), Cairns et al. (2009), and
Dowd et al. (2010a,b). M6was also dropped from the original set of
eight models: M6 is a special case of M7, and M7 was found to be
stable and to deliver consistently better andmore plausible results
than M6.

The structure of the paper is as follows. In Section 2, we specify
the stochastic processes needed for forecasting the term structure
of mortality rates for each of the models. Results for the different
models obtained using EW male mortality data are compared and
contrasted in Section 3. Section 5 examines two applications of
the forecast models, namely applications to survivor indices and
annuity prices, and makes additional comments on model risk
and plausibility of the forecasts. Each model is then tested for the
robustness of its forecasts in Section 4. Finally, in Section 6, we
summarise an analysis for US male mortality data: our aim is to
draw out features of the US data that are distinct from those of the
EW data. Section 7 concludes.

2. Forecasting with stochastic mortality models

We take six stochastic mortality models which, on the basis
of fitting to historical data, appear to be suitable candidates for
forecasting future mortality at higher ages, and prepare them for
forecasting. To do this, we need to specify the stochastic processes
that drive the age, period and (if present) cohort effects in each
model.

We define m(t, x) to be the death rate in year t at age x, and
q(t, x) to be the correspondingmortality rate,with the relationship
between them given by q(t, x) = 1 − exp[−m(t, x)]. The models
considered are outlined in Table 1.

All but M5 require the use of one or more identifiability
constraints (see Appendix A.1), and parameter values for the age,
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