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a b s t r a c t

In this paper, we show a characterization of upper comonotonicity via tail convex order. For any given
marginal distributions, a maximal random vector with respect to tail convex order is proved to be
upper comonotonic under suitable conditions. As an application, we consider the computation of the
Haezendonck riskmeasure of the sumof upper comonotonic randomvariableswith exponentialmarginal
distributions.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

In the study of the riskiness of an insurance portfolio, we are
often interested in the total loss as a sum of risk variables. While
traditional approaches have been based on the independence as-
sumption among risks, recent trends allow dependent structures
so that we can model the real situation more plausibly. Compli-
cations due to dependence among risks can be avoided by, or ap-
propriately dealt with through, replacing the original sum by a less
attractive one with a simpler dependence structure. Several con-
cepts have been introduced to compare risks in the actuarial litera-
ture (see e.g. Denuit et al., 2005; Dhaene et al., 2006). One common
way is to consider convex order which uses stop-loss premiums
with the same mean.

It is well known that if a random vector with given marginal
distributions is comonotonic, then it has the largest sum with re-
spect to convex order (see e.g. Dhaene et al., 2002a). A proof based
on geometric interpretation of the comonotonic support can be
found in Kaas et al. (2002). Conversely, it is also true that if a sum is

∗ Corresponding author.
E-mail addresses: kinsuever@gmail.com (H.S. Nam), qihe-tang@uiowa.edu

(Q. Tang), fan-yang-2@uiowa.edu (F. Yang).

maximal in convex order in the set of all random vectors with pre-
determined marginal distributions, then the underlying random
variables must be comonotonic. Cheung proved the claim for the
case of continuous marginal distributions in Cheung (2008). Later
it was generalized to the case of integrable distributions in Cheung
(2010). InMao andHu (2011) the authors showed that the problem
boils down to a bivariate case and the joint distribution is indeed
the minimum of the two marginal distributions. The well-known
fact that a randomvector is comonotonic if and only if it is pairwise
comonotonic is used. It is, however, no longer valid for an upper
comonotonic random vector and a counter-example is given in the
Appendix of this paper.

The concept of upper comonotonicity was introduced and in-
vestigated in Cheung (2009). A characterization using joint distri-
butions and the additivity of value at risk, tail value at risk, and
expected shortfall were given. In Dong et al. (2010), the authors
proved the additivity ofα-mixed inverse distribution functions and
stop-loss premiums for the sum of upper comonotonic random
variables. In Cheung (2010), it was shown that the additivity of
value at risk for the confidence level being sufficiently large im-
plies the upper comonotonicity.

On the other hand, as in the comonotonic case, we can consider
an ordering between the sum S of the components of a random
vector X and the corresponding sum Suc of an upper comonotonic
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random vector Xuc . Indeed, if Xuc coincides with X in the lower
tail in distribution and they have the same marginal distributions,
then the sum S precedes Suc in convex order (for details, see Dong
et al., 2010). If there is no coincidence in the lower tail, then the
convex order is no longer valid in general and it should be relaxed
to describe the upper tail only.

The concept of tail convex order was introduced by Cheung
and Vanduffel (forthcoming), who proved that, upon suitable
conditions, the sum of the components of an upper comonotonic
random vector is the largest in tail convex order. This suggests that
upper comonotonicity be related to tail convex order rather than
convex order. Therefore, the following characterization question
arises: If the sum of the components of a random vector is
maximal in tail convex order, then is this random vector upper
comonotonic? In the present paper, we shall focus on this question
and pursue an answer.

The rest of this paper is organized as follows: Section 2 prepares
some necessary definitions and states our main result, Section 3
formulates the proof of the result, Section 4 shows an application
to the computation of Haezendonck risk measures, and, finally,
Appendix contains some examples to further clarify some fallacies.

2. Main result

The underlying probability space is denoted by (Ω, F , P),
where real valued random variables or risks Xi and Yi are defined
for i = 1, . . . , n.

A subset C ⊆ Rn is said to be comonotonic if for any x and y
in C , either x ≤ y or y ≤ x holds. We call a random vector X =

(X1, . . . , Xn) to be comonotonic if it has a comonotonic support.
As a generalization of comonotonicity, we consider upper

comonotonicity. For any given d = (d1, . . . , dn) ∈ (R ∪ {−∞})n,
the upper quadrant (d1, ∞) × · · · × (dn, ∞) is denoted by U(d),
the lower quadrant (−∞, d1] × · · · × (−∞, dn] by L(d), and the
remaining complement Rn

\ (U(d) ∪ L(d)) by R(d).

Definition 2.1 (Cheung, 2009). A random vector X = (X1, . . . , Xn)
is said to be upper comonotonic if there exist some d ∈ (R ∪

{−∞})n and some null set N such that
(i) {X(ω) : ω ∈ Ω \ N} ∩ U(d) is comonotonic,
(ii) P(X ∈ U(d)) > 0,
(iii) {X(ω) : ω ∈ Ω \ N} ∩ R(d) is empty.

The usual inverse distribution functions F−1
X (p), F−1+

X (p) of a
random variable X : Ω → R are defined by
F−1
X (p) = inf{x ∈ R : FX (x) ≥ p},

F−1+
X (p) = sup{x ∈ R : FX (x) ≤ p},
respectively, with the convention inf ∅ = ∞ and sup ∅ = −∞.
To pick up any point in the closed interval [F−1

X (p), F−1+
X (p)], we

introduce the so-called α-mixed inverse distribution functions of
FX as

F−1(α)
X (p) = αF−1

X (p) + (1 − α)F−1+
X (p), p ∈ (0, 1).

See e.g. Dhaene et al. (2002a) for related discussions. From now on,
the distribution function FXi or FYi will be denoted by Fi as long as
no confusion arises.

A random variable X is said to precede another random variable
Y in stop-loss order (written as X ≤sl Y ) if X has less stop-loss
premiums than Y , i.e. E[(X − d)+] ≤ E[(Y − d)+] for all d ∈ R. It
is well known that stop-loss order preserves the ordering of TVaRp
and vice versa, i.e. X ≤sl Y if and only if TVaRp[X] ≤ TVaRp[Y ] for
all p ∈ (0, 1) (see Dhaene et al., 2006).

A random variable X is said to precede Y in convex order
(written as X ≤cx Y ) if E[X] = E[Y ] and X ≤sl Y . For an overview
of recent progresses on comonotonicity-based convex bounds,
see Dhaene et al. (2002b), Deelstra et al. (2011), and references
therein. In particular, by limiting the range of d in stop-loss order,
we are led to the following definition.

Definition 2.2 (Cheung and Vanduffel, forthcoming). A random
variable X is said to precede another random variable Y in tail
convex order (written as X ≤tcx Y ) if there exists some d∗ such that
(i) P(X ≥ d∗) > 0,
(ii) E[X] = E[Y ],
(iii) E[(X − d)+] ≤ E[(Y − d)+] for all d ≥ d∗.

For any given Y, the existence of an upper comonotonic random
vector Yuc satisfying S ≤tcx Suc is shown in Section 4 of Dong et al.
(2010), where (here and throughout) S and Suc are the sums of the
components of Y and Yuc , respectively.

For any given distribution functions F1, . . . , Fn, the Fréchet
space R = R(F1, . . . , Fn) is defined to be the set of all random
vectors with marginal distributions F1, . . . , Fn. Note that if we
restrict ourselves on R, then stop-loss order is exactly the same
as convex order.

Now we are ready to state the main result. In what follows, for
any given A ⊂ Rn, its closure, interior, and boundary are denoted
by A, int(A), and bd(A), respectively.

Theorem 2.3. For any given marginal distributions F1, . . . , Fn, if
there exists Y = (Y1, . . . , Yn) ∈ R = R(F1, . . . , Fn) such that

X1 + · · · + Xn ≤tcx Y1 + · · · + Yn, ∀(X1, . . . , Xn) ∈ R, (1)

then there exist some d∗
∈ Rn and a null set N ⊂ Ω such that

(i) P(Y ∈ U(d∗)) > 0,
(ii) {Y : ω ∈ Ω \ N} ∩ U(d∗) is comonotonic,
(iii) {Y : ω ∈ Ω \ N} ∩ int(R(d∗)) = ∅.
Furthermore, if P(Y ∈ bd(U(d∗))) = 0, then (Y1, . . . , Yn) is upper
comonotonic with a threshold in L(d∗).

Note that (i)–(iii) of the theorem are similar to, but not exactly
the same as, the three conditions in Definition 2.1. Example A.2
below shows the necessity of the condition P(Y ∈ bd(U(d∗))) = 0
for Y to be upper comonotonic.

3. Proof of the theorem

The proof of Theorem 2.3 will be given by observing relations
between Y and its comonotonic counterpart Yc in terms of stop-
loss premiums.

3.1. Lemmas

To begin with, we recall the following lemma:

Lemma 3.1 (Dhaene et al., 2002a). The stop-loss premiums of the
sum Sc of the components of a comonotonic random vector Yc

=

(Y c
1 , . . . , Y

c
n ) are given by

E[(Sc − d)+] =

n−
i=1

E[(Y c
i − di)+] for F−1+

Sc (0) < d < F−1
Sc (1),

where di = F−1(α)
i (FSc (d)) and α solves the equation F−1(α)

Sc
(FSc (d)) = d.

Note that a similar result also holds true for an upper comono-
tonic random vector (see e.g. Dong et al., 2010). In addition, we
can see that di = F−1(α)

i (q) is defined only for values of the form
q = FSc (d). Nevertheless, the applicability of Lemma 3.1 during
the proof of Theorem 2.3 is guaranteed by the following lemma,
which shows that the image of each Fi is a subset of the image of
FSc , namely, Im(Fi) ⊆ Im(FSc ).

Lemma 3.2. For any random vector Y = (Y1, . . . , Yn) and its como-
notonic counterpart Yc , we have

Im(Fi) ⊆ Im(FSc ), i = 1, . . . , n.
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