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a b s t r a c t

In this paper, we consider the optimal consumption and portfolio policies with the consumption habit
constraints and the terminal wealth downside constraints, that is, here the consumption rate is greater
than or equal to somenonnegative process, and the terminalwealth is no less than somepositive constant.
Using the martingale approach, we get the optimal consumption and portfolio policies.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Optimal intertemporal consumption and portfolio policies
in continuous time under uncertainty have traditionally been
interesting. Merton (1971) introduced the dynamic programming
method in order to study the optimal consumption and portfolio
selection problem in continuous time. Cox and Huang (1989);
Karatzas and Shreve (1998) and Karatzas and Shreve (1991)
introduced the martingale method independently.
There is no restriction on computation in the above two pa-

pers, except the nonnegative consumption and nonnegative ter-
minal wealth constraints. Recently, portfolio problems with these
kinds of constraints have been remarkably studied. Usually, these
constraints include consumption habit constraints (or consump-
tion constraints) and downside terminal wealth constraints.
For consumption constraints which many investors will agree

with, one simple example is the endowment funds; see Thaler
and Williamson (1994) and Cheng and Wei (2005). Meanwhile,
from the view point of the real life, it is also generally accepted
that people have the nature of keeping and improving their liv-
ing standards. They will be unhappy and try to overcome the rel-
atively hard time if the consumptions are below their own habit
levels. A reasonable assumption, in our opinion, is to consider the
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consumption habit as a consumption constraint, c(t) ≥ h(t),
where c(t) is the consumption level at time t , and h(t) is the con-
sumption habit at time t . Cheng and Wei (2005) considered the
portfolio and consumption decisions with the consumption habit
constraints, and obtained the optimal consumption behavior for
the consumption habit using the martingale approach. For more
references, see Abel (1990); Campbell and Cochrane (2000); De-
temple and Karatzas (2003). If h(t) ≡ R, R is some positive con-
stant, i.e. the consumption rate process is subjected to downside
constraint, Shin et al. (2007) studied a general consumption and
portfolio selection problem and obtained the general optimal poli-
cies in an explicit form. In Section 3 of Lakner and Nygren (2006),
they discussed the portfolio optimization problem for an investor
whose consumption rate process was also subjected to downside
constraints.
In real life, portfolio problems often include a downside

terminal wealth constraint. This could be a liquidity constraint
or can be caused by a guaranteed lower bound on the capital.
One simple example is the optimal investment in insurance
mathematics where the return contains a guaranteed benefit plus
a bonus, see Korn (2005). So, a reasonable assumption could be that
W ≥ K , whereW is the final wealth, and K is a positive constant.
This constraint is the so-called downside constraint (also called an
insurance constraint). In Section 4 of Lakner and Nygren (2006),
they discussed maximizing the expected utility from terminal
wealth under the downside constraints.
In Section 5 of Lakner and Nygren (2006), they discussed the

portfolio optimization problem for an investor whose consump-
tion rate process and terminal wealth are subjected to downside
constraints, i.e. c(t) ≥ R, W ≥ K . In their paper, consumption
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habit constraint does not depend on time t . It should be interest-
ing to consider the case where the consumption habit constraint
depends on time t , which means that c(t) ≥ h(t).
In this paper, we study the optimal consumption and portfolio

policy with both consumption habit constraints and terminal
wealth downside constraints. It should be mentioned that Lakner
and Nygren (2006) considered the consumption rate is bounded
below by a constant, and the price of risk securities follows
geometric Brownianmotion.Whereas, themodelwe are interested
in here is that the consumption rate is bounded below by some
function depending on time, and the price process for the risk
securities follows an Itô process. Using the so-called martingale
approach, we obtain the optimal consumption and portfolio policy.

2. The model

Fix a complete probability space (Ω,F , P) and a time span
[0,T], where T is a strictly positive real number. Let ω = {ωn(t) :
t ∈ [0,T], n = 1, 2, . . .N} be an N dimensional standard
Brownian motion defined on the probability space and {F = Ft ,
t ∈ [0,T]} be the filtration generated by ω.
We assume that F is complete in the sense that F0 contains all

the P null sets and thatFT = F . By the definition ofN dimensional
standard Brownian motion, ω(0) = 0, a.s., so F0 is almost trivial.
We consider a securitymarketwhich consists ofN+1 securities

traded, indexed by n = 0, 1, 2, . . . ,N . Security n 6= 0 is risky
and pays dividends at rate ln(t) and sells for Sn(t) at time t . We
will use S(t) to denote (S1(t), . . . , SN(t))T, where T means that the
transpose of a vector. Assume that ln(t) can bewritten as ln(S(t), t)
with ln(y, t) : RN

× [0,T] −→ R being Borel measurable.
Security n = 0 is (locally) riskless, pays no dividends, and sells

for

B(t) = exp
{∫ t

0
r(s)ds

}
. (2.1)

Assume further that r(t) , r(S(t), t) : RN
× [0,T] −→ R is

continuous.
The price process for risk securities S(t) follows an Itô process

satisfying

S(t)+
∫ t

0
l(s)ds = S(0)+

∫ t

0
µ(S(s), s)ds

+

∫ t

0
σ(S(s), s)dω(s), ∀t ∈ [0,T], a.s. (2.2)

where l is a N vector of ln’s, µ(y, t) : RN
× [0,T] −→ RN and

σ(y, t) : RN
× [0,T] −→ RN are continuous in y and t .

Assumption 1. The diffusion matrix σ(S(t), t) satisfies the non-
degeneracy condition yTσ(S(t), t)σ (S(t), t)Ty ≥ ε|y|2, almost
surely for all (y, t) ∈ RN

× [0,T] and some ε > 0.

This condition implies in particular that σ(S(t), t) has full rank
almost surely for all t ∈ [0,T].
Defining S̃(t) , S(t)

B(t) ,̃ l(t) ,
l(t)
B(t) , Itô’s formula implies that

S̃(t)+
∫ t

0
l̃(s)ds = S̃(0)+

∫ t

0

µ(S(s), s)− r(S(s), s)S(s)
B(s)

ds

+

∫ t

0

σ(S(s), s)
B(s)

dω(s)

= S̃(0)

+

∫ t

0

σ(S(s), s)[σ(S(s), s)−1(µ(S(s), s)− r(S(s), s)S(s))ds+ dω(s)]
B(s)

.

(2.3)

Define

G(t) , S(t)+
∫ t

0
l(s)ds,

and

G̃(t) , S̃(t)+
∫ t

0
l̃(s)ds,

where the former is the N vector of gains processes, and the latter
is the N vector of gain processes in units of the 0th security.
We shall use the following notation: If A is a matrix, then |A|2

denotes tr(AAT)where tr means trace.
Define

κ(S(t), t) , −σ(S(t), t)−1(µ(S(t), t)− r(S(t), t)S(t)), (2.4)

and

η(t) , exp
{∫ T

0
κTdω(s)−

1
2

∫ T

0
|κ|2ds

}
. (2.5)

For a given T > 0, we define the equivalent martingale measure P̃
as follows

P̃(A) , E[η(T)IA], ∀A ∈ FT, (2.6)

then

η(t) = E

[
d̃P
dP
|Ft

]
∀t ∈ [0,T], a.s. (2.7)

We will use the Ẽ to denote the expectation under P̃ .
By Girsanov’s theorem, we know that the process

ω̃(t) = ω(t)−
∫ t

0
κ(S(s), s)ds (2.8)

is a standard Brownian motion under P̃ , and so

G̃(t) = S̃(0)+
∫ t

0

σ(S(s), s)
B(s)

dω̃(s) (2.9)

is a local martingale under P̃ .
A trading strategy is anN+1 dimensional process (α, θ), where

α(t) and θn(t) represents the number of units of the 0th security
and the nth security, respectively, held at time t , and θ(t) is
measurable, adapted and satisfies Ẽ[

∫ T
0 θ(t)

Tσ(S(s), s)σ (S(s), s)T
θ(t)dt] <∞.
If there exists a consumption plan (c,W ) such that for every

t ∈ [0,T]

α(t)B(t)+ θ(t)TS(t)+
∫ t

0
c(s)ds = α(0)B(0)+ θ(0)TS(0)

+

∫ t

0
α(s)dB(s)+

∫ t

0
θ(s)TdG(s), a.s. (2.10)

and

W = α(T)B(T)+ θ(T)TS(T), a.s. (2.11)

where {c(t), 0 ≤ t ≤ T} is a consumption rate process which is
nonnegative, progressive, measurable, and satisfies

∫ T
0 c(t)dt <

∞, a.s.. We call (α, θ, c,W ) is a self-financing strategy. Let H
denote the space of all self-financing strategies. It is very easy to
verify that H is a linear space.

Lemma 2.1. Let (α, θ, c,W ) ∈ H, defineM(t) , α(t)+θ(t)T̃S(t)+∫ t
0
c(s)
B(s)ds, t ∈ [0,T]. Then {M(t), t ∈ [0,T]} is a local martingale

under P̃ . Furthermore, it is a supmartingale.



Download	English	Version:

https://daneshyari.com/en/article/5077020

Download	Persian	Version:

https://daneshyari.com/article/5077020

Daneshyari.com

https://daneshyari.com/en/article/5077020
https://daneshyari.com/article/5077020
https://daneshyari.com/

