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a b s t r a c t

Inmostmethods for modelingmortality rates, the idiosyncratic shocks are assumed to be homoskedastic.
This study investigates the conditional heteroskedasticity of mortality in terms of statistical time series.
We start from testing the conditional heteroskedasticity of the period effect in the naïve Lee–Cartermodel
for somemortality data. Thenwe introduce the Generalized Dynamic Factor method and themultivariate
BEKK GARCH model to describe mortality dynamics and the conditional heteroskedasticity of mortality.
After specifying the number of static factors and dynamic factors by several variants of information
criterion, we compare our model with other two models, namely, the Lee–Carter model and the state
space model. Based on several error-based measures of performance, our results indicate that if the
number of static factors and dynamic factors is properly determined, the method proposed dominates
other methods. Finally, we use our method combined with Kalman filter to forecast the mortality rates of
Iceland and period life expectancies of Denmark, Finland, Italy and Netherlands.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

A remarkable increasing interest has been observed in the past
few years inmethods that forecastmortality rates. Stochasticmod-
els of mortality are a significant topic of current research in actuar-
ial science and demography. The modeling approach proposed by
Lee and Carter (1992) is amongst the most widely used mortality
trend fitting and projection tools. The Lee and Carter model (here-
after LC model) is a parsimonious demographic model combined
with statistical time-series methods. The model assumes that the
dynamics of the logarithm of central death rates over time are
driven by a single time varying period effect. The mortality pro-
jection relies on the extrapolation of the period effect under an ap-
propriate statistical time-series model.
The original LC model entails two equations. The first equation

decomposes a time series of age-specific vital rates into three sets
of parameters: age pattern parameters, period effect parameters
and parameters that represent age-specific reactions to the period-
specific effect. The second equation is a model of the time path of
the period effect. The LC model adopts a combination of singular
value decomposition (SVD) estimation for the first equation and
time-seriesmethods formodeling the evolution of the period effect
(Wolf, 2004).
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Over the last decade, a host of extensions have been proposed
to improve the LC model. Renshaw and Haberman (2003) propose
adding additional time varying factors. Renshaw and Haberman
(2006) show that a cohort effect is required in order to fit gender-
based 1961–2003 UK data. Hyndman and Ullah (2007) develop a
multi-factormodeling approach using functional principal compo-
nents to fit demographic data. See Sherris and Wills (2008) for re-
cent discussions.
The LC model in its original form has some shortcomings al-

though it is relative simple, easily applied and provides fairly ac-
curate mortality projections. The simplicity of the LCmodel means
that the error terms in twoequations are assumed to bewhite noise
with zero mean and small constant variance over all ages and all
times, i.e., the model error terms are homoskedastic. The assump-
tion of constant volatility, however, is always unrealistic: the ob-
served logarithm of central death rates is much more variable and
the volatility is time varying (Lee and Miller, 2001).
In this paper, we focus on the mortality heterogeneity in

terms of statistical time series. Not only would the mortality rates
fluctuate but also the patterns of mortality may change over time
due to many reasons. Weiland et al. (2006) observe changes in
mortality for varying ages at different times. The cohort effect such
as changes in human behavior has contributed significantly to the
volatility in mortality. A sustained fall in smoking prevalence may
lead to lower gains in mortality improvement from the effects of
smoking behavior in future years (Olshansky et al., 2005). Deaths
related to AIDS, drug, alcohol abuse and violence make the future
course of mortality rates at young ages considerably uncertain.
Increasing obesity in children and young adults has continued
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to lead to a regime of decreasing life expectancy (Flegal et al.,
2004). Whilst medical advances and other factors will continue to
lead to further mortality decline, infectious diseases, for example
tuberculosis, SARS, hepatitis C and HIV, could work in the opposite
direction. It is always supposed that there is a smooth underlying
force of mortality. However, Kerkby and Currie (2008) find that
observed mortality is subjected to more than stochastic deviation
from the smooth surface; for example, flu epidemics, hot summers
or cold winters can disproportionately effect the mortality of
certain age groups in particular years. They call such an effect a
period shock. In sum, when one chooses an appropriate model for
forecasting future mortality trends, one must foresee whether the
model would reflect the heterogeneity (Gallop, 2007).
The warnings about heteroskedasticity, however, have usually

been applied only to cross sectional models, not to time-series
models. Schrager (2006) observes that the logarithm of the ob-
served force of mortality is much more variable at older ages than
at younger ages because of the much smaller absolute number of
deaths at older ages. They model heterogeneity by adding a het-
erogeneous component to mortality intensity. Bauer et al. (2008)
specify adequate volatility structures for forwardmodels to project
mortality. So far knowledge of the volatility of mortality rate has
been still insufficient and we know little about mortality hetero-
geneity in time series.
Our approach, inspired from method proposed by Alessi et al.

(2006), which combines the Generalized Dynamic Factor Model
(GDFM) and the multivariate Generalized Autoregressive Condi-
tionally Heteroskedastic (GARCH) model, purposes to avoid the
drawback of time-series heterogeneity inherent to the original
mortality forecasting methodology. Our model is a multivariate
forecasting method and can also be seen as a two-layer model. The
external layer involves the observedmortality processes. This pro-
cess is assumed to follow a measurement equation that contains
two parts: the common component and the idiosyncratic compo-
nent. The common component is a combination of state vector of
the system. It is specified in such a way that it captures the long
and short run relationships among mortality processes of differ-
ent ages. The internal layer is called the state equation where state
vectors are similar to period effects in the LC model. State vectors,
which are assumed to be a random walk process in the LC model,
are assumed to follow a VAR(1) process.
Our specifications are similar to the state space framework

that comprises of two latent components for each variable. The
advantages of utilizing the state space approach are two fold. First,
the state space model can capture most of the common properties
(correlation) among separate age groups. Inter-series relationships
can also be disaggregated to the latent component level. Second,
the state space model allows for both a dynamic representation
of the common components and non-orthogonal idiosyncratic
components. These advantages enable us to address the question
of whether an increase in volatility in one age induces additional
volatility in another. These advantages also provide us a greater
degree of insight that may be useful for mortality forecasting.
Thus modeling time-series heterogeneity of mortality can be

specified from two sides. On one hand, error terms in measure-
ment equation are assumed to follow ARCH or GARCH models.
These models are widespread tools for dealing with time-series
heteroskedasticity. On the other hand, we use the BEKK model of
Engle and Kroner (1995) or Dynamic Conditional Correlation (DCC)
model of Engle (2002) for error terms in state equation. The BEKK
model is a parameterization of conditional variance that guaran-
tees positivity of the conditional covariance matrix and reduces
the number of parameters to be estimated. The DCC model adapts
GARCH models specifically for the estimation of time varying cor-
relations. The BEKK model focuses on the dynamic of the condi-
tional covariance matrix, whereas the DCC model focuses on the

dynamic of the conditional variances and the conditional correla-
tion matrix.
The rest of the paper will be organized as follows. Section 2

reviews the LC model and provides some detailed tests for con-
ditional heteroskedasticity of the period effect in the original LC
model. Section 3 presents our dynamicmortality factormodelwith
conditional heteroskedasticity and briefly describes the estimation
procedure and forecasting methods with Kalman filter. Section 4
details some hypothesis tests and specifications such as the num-
ber of static factors and dynamic factors and tests for conditional
heteroskedasticity. Section 5 justifies out-of-sample performance
of the proposed method. Sections 6 and 7 provide some forecast
results for Iceland and some more countries. Concluding remarks
can be found in Section 8.

2. Testing the conditional heteroskedasticity of the period
effect in the original LC model

In this section, we first outline the LC model and the way it is
usually estimated. Then we will test the conditional heteroskedas-
ticity of the period effect. In the next section we will introduce our
alternative approach.

2.1. Overview of the LC model

Because this paper focuses on demography applications, we use
demography notations. Let mx,t denote the logarithm of central
death rates for age x in year t with x ∈ {1, 2, . . . ,N} and
t ∈ {1, 2, . . . , T }. Let mt = (m1,t ,m1,t , . . . ,mN,t)′ be an N-
dimensional vector process, where the notation M ′ indicates the
transpose of matrixM .
In the original LC model, it is assumed that each mortality rate

series mt can be written as the sum of two mutually orthogonal
unobservable components, the common component κt and the
idiosyncratic component εt with εt = (ε1,t , ε2,t , . . . , εN,t)

′. The
common component is driven by age effect θ (x) that describes the
relationship between ages and mortality rates and period effect
ft that captures the impact that time-specific events have on the
number of deaths experienced in a population, including effects
such as general health status of the population, availability of
health services, and criticalweather conditions (Olivieri, 2007).We
neglect here the cohort effect factor that captures the influence of
year of birth on mortality improvement rates. Thus the LC model
can be formulated as:

mx,t = f (x) + θ (x)ft + εx,t (x = 1, 2, . . . ,N, t = 1, 2, . . . , T ) (1)

or

mt = f + θ ft + εt = κt + εt (2)

where f = (f (1), f 2, . . . , f (N))′, θ = (θ (1), θ2, . . . , θ (N))′ and κt =
f + θ ft · ft is assumed to be governed by:

ft = d+ ft−1 + ut . (3)

Thus ft is a random walk with drift. In the original LC model,
error term vector εt and the error term ut are supposed to bewhite
noise, satisfying the distributional assumption:(
εt
ut

)
/Ft−1 ∼ N

((
0
0

)
,

(
Σε 0
0 σ 2u

))
(4)

where Ft−1 contains all the information available at time t , Σε
is the unknown covariance matrix of εt and σ 2u is the unknown
variance of ut .
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