Computers & Geosciences 37 (2011) 1642-1652

journal homepage: www.elsevier.com/locate/cageo

Contents lists available at ScienceDirect

Computers & Geosciences

Integrating spectral indices with environmental parameters for estimating
heavy metal concentrations in rice using a dynamic fuzzy

neural-network model

Meiling Liu?, Xiangnan Liu** Menxin WuP, Lufeng Li?, Lina Xiu?

@ School of Information Engineering, China University of Geosciences, Beijing 100083, China
b National Meteorological Center/CMA, Beijing 100081, China

ARTICLE INFO

Article history:

Received 31 October 2010
Received in revised form

7 March 2011

Accepted 12 March 2011
Available online 1 April 2011

Keywords:

Dynamic fuzzy neural-network model
Environmental parameters

Spectral indices

Heavy metal concentrations

ABSTRACT

A generalized dynamic fuzzy neural network (GDFNN) was created to estimate heavy metal
concentrations in rice by integrating spectral indices and environmental parameters. Hyperspectral
data, environmental parameters, and heavy metal content were collected from field experiments with
different levels of heavy metal pollution (Cu and Cd). Input variables used in the GDFNN model were
derived from 10 variables acquired by gray relational analysis. The assessment models for Cd and Cu
concentration employed five and six input variables, respectively. The results showed that the GDFNN
for estimating Cu and Cd concentrations in rice performed well at prediction with a compact network
structure using the training, validation, and testing sets (for Cu, fuzzy rules=9, R? greater than 0.75, and
RMSE less than 2.5; for Cd, fuzzy rules=9, R? greater than 0.75, and RMSE less than 1.0). The final
GDFNN model was then compared with a back-propagation (BP) neural network model, adaptive-
network-based fuzzy interference systems (ANFIS), and a regression model. The accuracies of GDFNN
model prediction were usually slightly better than those of the other three models. This demonstrates

that the GDFNN model is more suitable for predicting heavy metal concentrations in rice.

© 2011 Elsevier Ltd. All rights reserved.

1. Introduction

Crop contamination by heavy metals from agricultural sources
has affected food security and threatened human health in many
developed and developing countries in recent years (Rodriguez
et al,, 2007). However, accurate and fast detection of heavy metal
concentrations for crops growing in agricultural soil over large
areas is difficult and challenging. Traditionally, the assessment of
heavy metal contamination in crops has been carried out through
soil testing, crop tissue analysis, and long-term field trials in
sequential steps with increasing complexity and cost. With the
arrival of hyperspectral data, quick monitoring of crop stress under
heavy metal pollution over large areas has become feasible (Collins
et al.,, 1983; Liu et al., 2010a). This is because hyperspectral remote
sensing has many advantages over other methods, such as the
ability to detect variations in biochemical composition, in situ
sampling, lower cost, faster data acquisition, and better spatial and
temporal continuity. Great progress has been made in identifying
crops with heavy metal stress using hyperspectral remote sensing
(Chen et al., 2007; Ren et al., 2008; Chi et al., 2009), but the existing
work recognizes that spectral parameters lack the sensitivity
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needed for estimating heavy metal concentration in plants directly
(Kooistra et al., 2001, 2004). To improve the sensitivity in obtaining
macrolevel data about the precise levels of heavy metal pollution
applicable to agroecosystems, environmental parameters, includ-
ing those relating to soil and weather that serve as important
factors determining heavy metal diffusion in crops, should be taken
into account as potential parameters for assessing heavy metal
concentrations in crops (Jung and Thornton, 1997; Zeng et al.,
2011). By combining hyperspectral data with environmental fac-
tors, which can be as readily available as spectral indices, accurate
and fast detection of heavy metal concentrations in crops over
large areas can be achieved. Therefore, the development of a
method for effectively integrating spectral and environmental
parameters is of great interest for evaluating heavy metal concen-
trations in crops. It is well known that fuzzy neural-network (FNN)
models can serve as a powerful tool for dealing efficiently with
imprecision and nonlinearity, as well as for determining input-
output relationships for complex systems, based on the strength of
their interconnections presented in a set of sample data. Since FNN
combines a neural network and a fuzzy logic system by carrying
out fuzzy reasoning within the structure of a neural network (Lin
and Lin, 1997), it not only is able to express fuzzy knowledge and
carry out fuzzy reasoning, but it also is strong in learning ability,
nonlinear mapping, and data processing ability within the neural
network. Moreover, this FNN was selected because it allowed
consideration of the neural network not as a black box model,
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but as a model able obtain rules with a physical meaning from
experimental data.

Research on FNN has recently become an important issue, and
some progress has been made (Buckley and Hayashi, 1994; Ouenes,
2000; Liao and Tsao, 2004). A few researchers have developed
different fuzzy neural network models, such as the adaptive-
network-based fuzzy inference system (ANFIS) (Jang, 1993; Ertunc
and Hosoz, 2008; Moghaddamnia et al., 2009), the self-organizing
fuzzy neural network (SOFNN) (Leng et al., 2005), the dynamic fuzzy
neural network (DFNN) (Wu and Er, 2000), and generalized dynamic
fuzzy neural networks (GDFNN) (Er et al., 2004; Wen and Zhu, 2004;
Zhu et al., 2007). They have developed a number of applications for
solving a range of real world problems. Compared with other fuzzy
neural networks, GDFNN is highly accurate and has a compact
structure based on new adding and pruning techniques, with an
ellipsoidal basis function (EBF) in hidden layers of the network.
Thus, GDFNN was adopted in this study. The objective of this
research was to apply the GDFNN model to estimate heavy metal
concentrations in rice samples using a combination of spectral
indices and environmental parameters.

2. Materials and methods
2.1. Study area

To develop a model for estimating the heavy metal concentra-
tion in rice, the three experimental fields with different heavy
metal contamination levels were selected. The fields (43°52.2’N-
44°06.3'N, 125°10.2’E-125°10.4’) are located in Changchun city,
Jilin province, China. The site is within the temperate continental
climate zone, with a mean annual rainfall of 522-615 mm; soils
are dominated by black soils. The plant selected in this site is rice,
which is one of the most important crops in China. The rice
growing in the field was cultivated scientifically and supplied with
abundant fertilizers, manures, and irrigation water to avoid other
environmental factors causing unwanted stress. The main physi-
cochemical characteristics of the soil are displayed in Table 1. As
seen in Table 1, the average values of total carbon (C), total
nitrogen (N), total potassium (K), and total phosphorus in the soil
were 0.19%,1.92%, 1.12% and 0.65 g kg~ !, respectively. The field
experiment has soils with Cu and Cd concentrations above the
background level; other heavy metal elements were lower than the

Table 1

background level. Since the rice is not affected by nutrient
deficiency, water stress, etc., it could be hypothesized that rice
was mainly influenced and stressed by Cu and Cd.

2.2. Data collection

The data sets collected included hyperspectral data, meteor-
ological data, soil data, and concentration data for heavy metals in
rice.The spectral data collection was carried out during four days
during a typical rice growth season: 8 July, 4 August, 29 August,
and 18 September 2008, which corresponded to the seeding,
tillering, booting, and mature growth stages of rice. All spectral
measurements were taken under cloudless or near-cloudless
conditions between 10:00 and 14:00, using an ASD FieldSpec
Pro spectrometer (Analytical Spectral Devices, Boulder, Co., USA).
This spectrometer was fitted with fiber optics having a 10° field of
view, and was operated in the spectral region 350-2500 nm with
sampling interval 2 nm. Reflectance spectra were measured
through calibration with a standardized white Spectralon panel.
A panel radiance measurement was taken before and after the
crop measurement with two scans each time. The measurements
were carried out from 1.0 m above the rice canopy. Each site was
scanned 10 times and these measurements were then averaged
for the particular sites.

Crop and soil sampling were done almost synchronously with
canopy spectral reflectance measurements. The leaves from rice
plants and soil from sample sites were collected and placed into
respective sealed plastic bags to obtain biochemical composi-
tions, such as nutrient elements and heavy metal concentrations.
The 120-160 samples from heavy metal of crop leaves were
collected at each growth stage of rice. Heavy metal concentra-
tions in soil and rice were determined by an atomic absorption
spectrophotometer (AAS) (Spectr AA 110/220, Varian, USA). Total
C, total N, and total K were measured by an elemental analyzer
(Leco, USA), and total phosphorus in the soil were determined by
a spectrophotometer analyzer (751GD, Shanghai Metash Instru-
ment Co. Ltd.) at the Chinese Academy of Agricultural Sciences
(Bao, 2005). Spectral indices were derived from original reflec-
tance. A number of studies have demonstrated that the spectral
shift of plants induced by heavy metal pollution occurred in both
the visible and the near-infrared (NIR) parts of the spectrum
(Kooistra et al., 2004). To improve the accuracy in estimating
heavy metal concentrations in rice, spectral indices sensitive to

The physical and chemical properties of the soils in the experimental fields (mean+S.D.).

Heavy metal concentrations Cu (mg/kg) Zn (mg/kg) Pb (mg/kg) Cr (mg/kg) As (mg/kg) Cd (mg/kg)
Background value?® 20.8 63.2 26.7 60.1 10.2 0.078
Measured value 54.78+2.58 58.06+6.03 19.51+4.05 15.79+6.56 9.39+0.88 0.35+0.01
Measured other soil property Total carbon (%) Total nitrogen (%) Total phosphorus (g/kg) Total potassium pH Organic matter (%)
0.19+0.03 1.92+0.41 0.65+0.09 1.12+0.32 6.8+0.1 2.8+0.15
@ Soil quality standard according to the Environment Monitoring Centre of China.

Table 2

Five spectral indices used as input variables of the GDFNN model.
Spectral indices Wavebands (nm) Formula Reference
REP 680-760 D;, = % when D;, is maximum value spectra between the red and NIR Chang and Colllins (1983)
0SAVI[670,800] 670, 800 OSAVI = (1+0.5)(Rgoo—Rs70)/(Rsoo + Re70 +0.5) Huete (1988)
RVI[700,750] 700, 750 RVI = R7s50/R700 Schuerger et al. (2003)
NDVI[695,760] 695, 760 NDVI = frso—Ress Schuerger et al. 2003
DVI[682,734] 682, 734 DVI = R734—Rss2 Kooistra et al. (2004)

Note: R; is the reflectance of band i.
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