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Recent developments in ruin theory have seen the growing popularity of jump diffusion processes in
modeling an insurer’s assets and liabilities. Despite the variations of technique, the analysis of ruin-related
quantities mostly relies on solutions to certain differential equations. In this paper, we propose in the
context of Lévy-type jump diffusion risk models a solution method to a general class of ruin-related
quantities. Then we present a novel operator-based approach to solving a particular type of integro-
differential equations. Explicit expressions for resolvent densities for jump diffusion processes killed on
exit below zero are obtained as by-products of this work.
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1. Introduction

Historically, most insurance-related problems in ruin theory are
natural applications of jump processes due to the nature of insur-
ance claims which occur at discrete time points, whereas many
classical models in financial mathematics rely on continuous pro-
cesses to reflect fluctuations in the constantly changing financial
markets. Although the two disciplines of applied probability have
evolved rather independently, there is a common trend in recent
years to incorporate stochastic models with both continuous and
jump components. For example, on the ruin theory side, in addi-
tion to the random jumps which account for insurance claims, dif-
fusion components have gained increasing popularity to describe
investment returns in sophisticated risk models. On the ground of
previous works in both areas, we shall investigate a rather general
jump diffusion model in which the analysis of ruin-related quanti-
ties is the main objective and can be extended for other quantities
of interests.

To give a motivation of the jump diffusion risk model under
consideration, we first review the basic structure of classical risk
models. Despite various forms in the literature, a risk model
typically consists of assumptions on two offsetting cashflows.
(1) The incoming cashflow is usually generated by premium
income, investment returns, capital injections, etc. (2) The
outgoing cashflow is composed of insurance claims paid to policy
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holders, dividends paid to shareholders and business overhead
costs, etc.

Given the basic structure of risk models, jump diffusion
processes are well suited for modeling purposes. On the asset side,
the drift component can be chosen to reflect the dominating trend
of growth in surplus and the volatility component accounts for
the randomness in surplus due to unforeseeable events, whereas
on the liability side, the jump component represents an insurer’s
claim payments or losses due to extreme events on a large scale.
To allow for more flexibility, one could model the actual jump in
surplus caused by a random claim, by allowing its dependency on
both the size of the claim and the surplus level prior to the claim.

Translating the descriptions above into probabilistic terms,
we assume an insurer’s surplus is modeled by X = {X;,t >
0} defined on (£2, #,P) together with a family of probability
measures {P*, x € R} satisfying the usual conditions. The surplus is
determined by the following stochastic differential equation (SDE)

dX; = pn(Xp) dt + o (X¢) dB; — a(X;-) dZ;, (1.1)

with P*(Xo = x) = 1, where a(-) measures the actual impact of a
claim on the surplus level, B is an adapted Brownian motion and Z
is an adapted pure jump process. Certain integrability conditions
are required for p, o and a to ensure the existence and pathwise
uniqueness of the process. Many well-known stochastic models in
ruin literature can be characterized by this process. Among many
others, examples include various compound Poisson risk models
in Asmussen (2000) and Gerber (1979), pure diffusion risk models
in Gerber and Shiu (2006) and Cai et al. (2006) as well as risk
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models involving stochastic investment returns such as Hgjgaard
and Taksar (2001), Jang (2007) and Yuen et al. (2007), etc.

Despite its generality, the model (1.1) has its own limitations
for more general applications. For instance, if the size of increase
in the aggregate claim is AZ(t) = z, then the surplus will have a
jump due to the impact measured by AX(t) = a(X;_)z. However,
for practical applications, the jump in surplus could be dependent
onboth X (t—) and z, but not necessarily linear in z. It says in reality
that a relatively large insurance claim on a low surplus causes far
more financial stress than a small claim on a more sustainable high
surplus. With the advances in Lévy processes, such generality can
be easily tackled by using a Lévy-type stochastic integral.

From now on, we shall build our analysis on a process defined
on the same probability space (§2, &, P) and which is more general
than (1.1). To make the process as inclusive as possible in the
context of ruin theory, we define the real-valued surplus process
X = (X¢, t > 0) by the following stochastic integral,

dX, = pu(X,_)dt + o(X,—)" dB,

+ / ~ F(X,_, z) 'N(dt, dz), (1.2)

o

where 67 = (01,...,0m) : R > R™MF' = (F,...,F,) :

R x R — RP,B = (By,...,Bp) is an m-dimensional
standard Brownian motion and N(dt,dz)T = (N;(dt,dz;) —
vi(dzy)dt, ..., Np(dt, dzp) — vp(dzp)dt), and {N;, j = 1,...,p}
are independent one-dimensional Poisson random measures with
Lévy measures {v;, j = 1, ..., p} such that v;(A) = EN;(1, A) for
any Borel set A C R such that 0 ¢ A. We introduce the notation
a(x,y) = o(x)"To(y). Readers are referred to Applebaum (2004)
and @ksendal and Sulem (2007) for detailed accounts of Lévy-type
stochastic integrals. It is known (c.f. Section 6.2 of Applebaum,
2004) thatif there exist constants K; and K5 such that forall x;, x, €
R

lL(x1) — w(x2) 1 + la(x1, x1) — 2a(x1, x2) + a(Xa, x5)|
)4 00
+ Z/ IFe(x1, 2) — Fe(xa. 2)[vi(d2) < K1 — Xo 2,
k=19 =

and for all x € R,

p (o)

L@ + lax, x)| + Z/ |Fe(x, 2)|*vie(dz)
k=1Y—

< K(1+ |x%), (1.3)

then the stochastic process X exists and is pathwise unique. For
practical applications, it is reasonable to assume that v is a finite
measure. Hence we can show by Itd’s formula for semimartingales
that the infinitesimal generator of X given in (1.2) is given by

1
Af(x) = LXf (%) + Ea(x, X)f" ()

)4 o0
+) / {f (x+ Fu(x,2)) = f(0)}uild2), (14)
k=1Y =
where
)4 o0
i = = Y- [ Rz,
k=1 =

The focus of this paper is to present a solution method to the
following quantity, which shall be called the expected present
value of total operating costs up to default,

H(x) = E [/d e %X, dt] , (1.5)
0

where § > 0, the event of default is defined by 73 = inf{t|X; <
d} with the convention that inf@ = oo, the 8(R)-measurable
function [ represents the operating cost depending on the surplus
level and d is a prescribed level of default. When d = 0, the
event of default reduces to what is commonly known as the event
of bankruptcy in ruin theory. This quantity (1.5) is known as a
solution to the Poisson equation and is well-studied in the context
of diffusion processes. An overview of the Poisson equation can be
found in Bass (1997). There are also extensive research works on
such quantity in the context of Lévy-type stochastic integrals for
stochastic control problems, c.f. @ksendal and Sulem (2007).

The quantity (1.5) is first introduced in ruin literature by Cai
et al. (2009) in the context of piecewise-deterministic compound
Poisson process and can be viewed as a generalization of the
Gerber-Shiu expected discounted penalty function. The relation-
ship between (1.5) and various other ruin-related quantities has
been explored in more general renewal risk models such as Feng
(2009a,b). It is remarkable to note that in all previously mentioned
risk models the quantity (1.5) is shown to include the Gerber-Shiu
function and expected present value of dividends under various
dividend strategies, as well as many other quantities. The general-
ity of this quantity enables us to focus on an “all-in-one” solution
method to all quantities in its family, rather than putting redun-
dant efforts to compute them individually. It also has the technical
advantage of providing a framework to extend the analysis of ruin
to that of default, which is of evident importance in the study of
credit risk in both financial and insurance industry. Readers may
refer to Crouhy et al. (2000) for a detailed account of distinction
between default and bankruptcy and their significance from the
standpoint of risk management.

This paper attempts to address the solution method of the
quantity (1.5) in the following two steps. (1) We demonstrate in
Section 2 that the solution indeed satisfies a Poisson equation
under certain smoothness conditions. Although experienced
researchers may view this as a “folklore result”, we provide a
rigorous proof for lack of direct references in the literature on
this particular result and also in order to justify the smoothness
conditions which may not seem obvious. Two well-known
examples are supplied to illustrate a quick path to intermediate
differential equations which would otherwise require onerous
work. (2) This paper also presents a novel operator-based approach
to solve the Poisson equation in the context of a jump-diffusion
model in Section 3, followed by numerous examples of ruin-related
quantities with explicit solutions. This operator-based approach
appeared in various forms in the context of different risk models
such as Cai et al. (2009) and Feng (2009b). In a forthcoming
paper by Feng and Shimizu (2010), the operator-based approach
is further extended to analyze a more general Lévy risk model.
It should be pointed out that a subset of the operator identities
shown in Appendix B has been used in Albrecher et al. (2010)
as a basis for automated computer algebra systems, such as
Mathematica, for solving boundary value problems in the context
of a renewal risk model. The approach in the present paper
continues in this direction and shows the potential of further
broadening the spectrum of problems solvable by computer
algebra systems.

Another interesting by-product of this work is to derive the so-
called resolvent density Rs(x, y), which is defined by

E¥ [/ e f (X,) dS] =/R5(X,y)f0’) dy,
0 R

for all nonnegative measurable f on R. To the best knowledge of
the author, there is scarce literature on resolvent densities for jump
diffusion processes. We produce in Section 3 an explicit expression
of the resolvent density for a superposition of a compound Poisson
process and a Brownian motion killed on exiting [0, oo). The
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