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Integrated insurance risk models with exponential Lévy investment
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Abstract

We consider an insurance risk model for the cashflow of an insurance company, which invests its reserve into a portfolio consisting of
risky and riskless assets. The price of the risky asset is modeled by an exponential Lévy process. We derive the integrated risk process and
the corresponding discounted net loss process. We calculate certain quantities as characteristic functions and moments. We also show under weak
conditions stationarity of the discounted net loss process and derive the left and right tail behavior of the model. Our results show that the model
carries a high risk, which may originate either from large insurance claims or from the risky investment.
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1. Introduction

Throughout this paper let
(
Ω ,F, (Ft )t≥0, P

)
be a filtered

complete probability space on which all stochastic quantities
are defined. The filtration (Ft )t≥0 is right continuous and
all stochastic processes to be defined in this paper are
adapted. We define first the insurance risk process as in the
Cramér–Lundberg model by

U (t) = u + ct − S(t), t ≥ 0,

where u > 0 is the initial risk reserve, c > 0 is the constant
premium rate and the total claim amount process is defined as
compound Poisson process S(t) =

∑N (t)
j=1 Y j , t ≥ 0. The claim

sizes (Y j ) j∈N are independent and identically distributed (iid)
random variables (r.v.’s) with common distribution function F
supported on the whole of R+

= (0, ∞) and finite mean µ.
The claims arrive at random time points 0 < T1 < T2 < · · ·

and the claim arrival process N (t) = card{k ≥ 1 : Tk ≤ t}
for t > 0 with N (0) = 0 is a homogeneous Poisson process
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with intensity λ > 0. Finally, (N (t))t≥0 and (Y j ) j∈N are
independent processes.

This classical model is extended by allowing for investment
of the risk reserve. We consider an insurer who invests its
reserve into a Black–Scholes type market consisting of a bond
and some stock, modeled by an exponential Lévy process. Their
respective price processes follow the equations

X0(t) = eδt and X1(t) = eL(t), t ≥ 0. (1.1)

The constant δ > 0 is the riskless interest rate. The process
(L(t))t≥0 is a Lévy process with characteristic exponent Ψ ,
i.e. E[exp (isL(t))] = exp (tΨ(s)), s ∈ R, t ≥ 0, where Ψ has
Lévy–Khintchine representation

Ψ(s) = isγ −
σ 2

2
s2

+

∫
R

(
eisx

− 1 − isx1{|x |≤1}

)
ν(dx),

s ∈ R, (1.2)

with γ ∈ R, σ ≥ 0 and Lévy measure ν satisfying ν({0}) = 0
and

∫
R(x2

∧1)ν(dx) < ∞. The characteristic triplet (γ, σ 2, ν)

determines the Lévy process. For general Lévy process theory
we refer to the monographs by Cont and Tankov (2004) or Sato
(1999).

For allocation of the reserve among the riskless and the
risky asset we use the so-called constant mix strategy; i.e.
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C. Klüppelberg, R. Kostadinova / Insurance: Mathematics and Economics 42 (2008) 560–577 561

the initial proportions which are invested into bond and stock
remain constant over a predetermined planning horizon; see e.g.
Emmer et al. (2001), Section 2. Such a strategy is dynamic in
the sense that it requires at every instance of time a rebalancing
of the portfolio depending on the corresponding price changes.
We denote by θ ∈ [0, 1] the fraction of the reserve invested into
the risky asset; we call θ the investment strategy.

To derive the investment process we follow the calculations
in Emmer et al. (2001) and Emmer and Klüppelberg (2004).
We state first the corresponding SDEs for the price processes,
where we use Itô’s formula:

dX0(t) = δX0 (t) dt, t > 0, X0(0) = 1,

dX1(t) = X1(t−) dL̂(t)

= X1(t−)

(
dL(t) +

σ 2

2
dt + e1L(t)

− 1 − 1L(t)

)
,

t > 0, X1(0) = 1,

where 1L(t, ω) = L(t, ω) − L(t−, ω) for each ω ∈ Ω
denotes the jump of L at time t > 0. The process L̂ is such
that eL(t)

= E(L̂(t)), t ≥ 0, where E denotes the stochastic
exponential of a process (see, e.g. Protter (1990), Section 2.8,
or Cont and Tankov (2004), Section 8.4.2).

Definition 1.1. For θ ∈ [0, 1] we define the investment process
as the solution to the SDE

dXθ (t) = Xθ (t−)
(
(1 − θ)δdt + θdL̂(t)

)
,

t > 0, Xθ (0) = 1. (1.3)

This approach is based on self-financing portfolios and
hence classical in financial portfolio optimization; see Korn
(1997), Section 2.1. The following is a consequence of Itô’s
Lemma.

Lemma 1.2. The SDE (1.3) has the solution

Xθ (t) = E(L̂θ (t)) = eLθ (t), t ≥ 0, (1.4)

where L̂θ (t) = (1 − θ)δt + θ L̂(t) and Lθ is such that
E(L̂θ (t)) = eLθ (t).

Lemma 1.3 (Emmer and Klüppelberg (2004), Lemma 2.5). The
process (Lθ (t))t≥0 is a Lévy process with characteristic
exponent Ψθ , and the characteristic triplet (γθ , σ

2
θ , νθ ) is given

by

γθ = γ θ + (1 − θ)

(
δ +

σ 2

2
θ

)
+

∫
R
(log(1 + θ(ex

− 1))1{| log(1+θ(ex −1))|≤1}

− θx1{|x |≤1})ν(dx),

σ 2
θ = θ2σ 2,

νθ (A) = ν
({

x ∈ R : log(1 + θ(ex
− 1)) ∈ A

})
for any Borel set A ⊂ R. �

Remark 1.4. (i) Besides the characteristic exponents Ψ and Ψθ

we shall also need the Laplace exponents given by

ϕ(s) = Ψ(is) = log E
[
e−sL(1)

]
, (1.5)

ϕθ (s) = Ψθ (is) = log E
[
e−sLθ (1)

]
, (1.6)

provided they exist. If ϕ(s) < ∞, then E
[
e−sL(t)

]
= etϕ(s) <

∞ for all t ≥ 0, see Sato (1999), Theorem 25.17. As we show
in Lemma A.1(c), E

[
esLθ (1)

]
< ∞ for all θ ∈ [0, 1] provided

E
[
esL(1)

]
< ∞.

(ii) A jump of size 1L of L leads to a jump of size e1L
−1 of L̂

and to a jump of size 1Lθ = log(1+θ(e1L
−1)) > log(1−θ)

of Lθ . In other words, νθ is the image measure of ν under the
transformation x 7→ log(1 + θ(ex

− 1)). This explains the
requirement θ ≤ 1.
(iii) If L is a process of finite variation, then Lθ is as well.
Indeed,∫

|x |≤1
|x |νθ (dx)

=

∫
| log(1+θ(ex −1))|≤1

| log(1 + θ(ex
− 1))|ν(dx)

≤

∫
−1

−∞

| log(1 + θ(ex
− 1))|ν(dx)

+

∫ p

−1
| log(1 + θ(ex

− 1))|ν(dx),

where p = log(1 + θ−1(e − 1)) > 0. Then
∫

−1
−∞

| log(1 +

θ(ex
− 1))|ν(dx) ≤ | log(1 − θ)|

∫
−1
−∞

ν(dx) < ∞ and, because
of the finite variation of L , also

∫ p
−1 | log(1+θ(ex

−1))|ν(dx) ≤∫ p
−1 |x |ν(dx) < ∞ holds. �

The goal of this paper is to study the integrated risk
process, which allows for risk assessment of the insurance and
investment risk at the same time. This process is defined in
Section 2. We assume throughout this paper that investment
process and total claim amount process are independent, which
allows for a very explicit analysis of the integrated risk process.

In Section 3 the stationary version of the integrated risk
process, the discounted net loss process (DNLP), is defined and
investigated. The model fits into the framework of generalized
Ornstein–Uhlenbeck processes, which have recently attracted
much attention. Due to the special structure of our model we
derive more specific results than in the more general case
treated in Lindner and Maller (2005). We start with stationarity
conditions and compare the process to its natural embedded
discrete skeleton process; i.e. the process sampled at the claim
arrival times. Our most important results in this section concern
the tail behavior of the stationary distribution. We show in
particular that the stationary distribution of the continuous time
process and the discrete time process coincide. We analyse
two different regimes, which both lead to Pareto tails of the
stationary distribution. The reasons, however, are different. If
the claims have finite moments of sufficiently high order, under
weak regularity conditions, both tails of the stationary DNLP
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