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Abstract

In this paper, we consider “heavy-tailed” data, that is, data where extreme values are likely to occur. Heavy-tailed data have been analyzed
using flexible distributions such as the generalized beta of the second kind, the generalized gamma and the Burr. These distributions allow us
to handle data with either positive or negative skewness, as well as heavy tails. Moreover, it has been shown that they can also accommodate
cross-sectional regression models by allowing functions of explanatory variables to serve as distribution parameters.

The objective of this paper is to extend this literature to accommodate longitudinal data, where one observes repeated observations of cross-
sectional data. Specifically, we use copulas to model the dependencies over time, and heavy-tailed regression models to represent the marginal
distributions. We also introduce model exploration techniques to help us with the initial choice of the copula and a goodness-of-fit test of elliptical
copulas for model validation. In a longitudinal data context, we argue that elliptical copulas will be typically preferred to the Archimedean copulas.
To illustrate our methods, Wisconsin nursing homes utilization data from 1995 to 2001 are analyzed. These data exhibit long tails and negative
skewness and so help us to motivate the need for our new techniques. We find that time and the nursing home facility size as measured through
the number of beds and square footage are important predictors of future utilization. Moreover, using our parametric model, we provide not only

point predictions but also an entire predictive distribution.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

In finance and insurance, the assumption of normality is
widespread. Empirical evidence shows, however, that data often
exhibit “heavy-tails”, meaning extreme values in the data are
more likely to occur than in normally distributed data. In
finance, for example, the asset pricing theories CAPM and
APT assume normally distributed asset returns. Distributions
of the returns of financial assets, however, suggest heavy-tailed
distributions rather than normal distributions as assumed in the
pricing theories (see, for example, Rachev et al., 2005). In
healthcare, heavy-tailed data are also common. For example,
outcomes of interest such as the number of inpatient days or
inpatient expenditures are typically right skewed and heavy-
tailed due to a few yet high-cost patients (Manning et al., 2005).
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Actuaries can also regularly encounter heavy tails in non-life
insurance (Klugman et al., 2004).

To describe the tail behavior of data, extreme-value statistics
has been an area of active development recently (Beirlant
et al., 2004). However, the subject of extreme-value statistics
is devoted to modeling tail behavior at the expense of largely
ignoring the rest of the distribution. In contrast, our interest
is in the entire distribution. Moreover, in this paper we focus
on regression analysis of heavy-tailed data. Regression models
allow researchers to understand variables of interest in terms of
other “explanatory” variables. Regression modeling in extreme-
value statistics is an area that has only begun to receive serious
attention (Beirlant et al., 2004).

There are three commonly used techniques in regression
analysis to deal with skewness and heavy tails. The most
widely used method is to take a logarithmic transformation
of the dependent variable and then apply ordinary least
squares (Carroll and Ruppert, 1988). A second natural approach
is to use generalized linear models (GLMs), an important class
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of nonlinear regression models. In GLMs, one directly assumes
a parametric distribution family for the dependent variable
but then allows the mean parameter to be a function of
the covariates. GLMs have been applied in insurance since
early 1980s, Haberman and Renshaw (1996) reviewed GLM
applications to actuarial problems. Further, in the classic work
by McCullagh and Nelder (first published in 1983, second
edition in 1989), many examples of insurance were also given
to illustrate how to fit GLMs to different types of data. A
third approach is to use parametric survival models, including
location—scale and proportional hazard models (Lawless,
2003). Parametric survival analysis includes regression models
to analyze censored data, but the methods can certainly be
applied to complete data. For complete treatments of the
parametric survival models, see Lawless (2003) and Kalbfleisch
and Prentice (2002).

In some heavy-tailed data situations, flexible positive
random variable distributions are more appropriate than the
distributions used with GLMs and in survival modeling.
The three parameter generalized gamma (GG) and Burr
distributions, as well as the four parameter generalized beta
of the second kind (GB2), have been used to analyze cross-
sectional data in the econometrics literature. When the data are
negatively skewed and have a fat left tail, such as the Wisconsin
nursing homes utilization data we analyze in this paper, flexible
distributions are also needed. Section 2 introduces the flexible
distributions that we will use in our regression modeling.

Although widely applicable, traditional regression analysis
is limited in that all the observations are assumed to be
statistically independent. In insurance and other fields, often
the outcome of interest is measured repeatedly over time. This
type of data structure is called longitudinal or panel data. In
contrast to the cross-sectional data where a single outcome is
observed for each subject, in a longitudinal data framework,
observations of a variable of interest and a set of covariates
are made repeatedly on several subjects over time. General
discussions of longitudinal data and longitudinal modeling can
be found in Diggle et al. (2002), Baltagi (2005) and Frees
(2004).

To model heavy-tailed longitudinal data, one natural
approach is to take a logarithmic (or other nonlinear)
transformation of the dependent variable and then apply
the usual linear models that assume that the dependent
variable follows a multivariate normal distribution. As with
cross-sectional modeling, this has the advantage of the ease
of implementation. From a user’s perspective, the main
disadvantage is that one is forced to think of modeling in terms
of the rescaled dependent variable which is often difficult to
interpret.

Another natural approach is to use GLMs, where two
classes of longitudinal models are commonly used in the
literature. The first class is known as a marginal model, where
the association among observations from the same subject
is not of explicit research interest. The mean regression is
modeled as a generalized linear regression model, separately
from the association among repeated observations from each
subject. Marginal models are semiparametric in that only

the mean, variance and covariances among responses are
specified. For long-tailed data, this could represent a serious
loss of information. Moreover, moments may not even exist
with long-tailed data, meaning that moment-based methods
are of limited use. In marginal models, the association
among repeated measures is of secondary interest compared
to the regression parameters which have population average
interpretations. However, for many insurance and finance
applications, behavior over time is the key element of
interest in the problem. Nonetheless, marginal models require
fewer assumptions, and are computationally simpler, in many
problems when generalized estimating equations (GEE) are
employed for estimation rather than a likelihood based method.
For a complete treatment of GEE, see Hardin and Hilbe (2003).

Random effects models represent a second class that
uses a GLM approach. These can be motivated using a
“two-stage” sampling scheme. In the first stage, n subjects
are drawn randomly from the population so that certain
parameters are associated with each subject. In the second
stage, conditional on subject specific parameters, observations
are drawn for subject i at repeated time points ¢. The
underlying idea is that there is heterogeneity among subjects
which can be modeled by a probability distribution, while
the association among observations from each subject arises
from the unobservable characteristics. Unlike marginal models,
random effects regressions include covariate effects and within-
subject association through a single equation. Regression
parameters can vary across subjects; they measure the effects of
explanatory variables on the response variable for each subject.
Generalized linear random effects models extend the linear
mixed models in that the random effects are included in the
linear predictor, g(i;;) = zi/e; + X;;'B, where g is a link
function, z;; and x;; are rows in the design matrices for random
and fixed effects, «; is for random effects of subject i and f
is the parameter vector for fixed effects. The distribution of «;
is usually assumed to follow a normal distribution. Given «;,
the responses from each subject are independent and follow a
GLM.

Generalized linear random effects models are usually
estimated using likelihood based methods. It is difficult
to justify a particular distribution for the random effects.
Moreover, maximum likelihood estimation based on the
marginal distribution of the observations integrates out the
random effects, which, in some cases, is numerically not
feasible (Schall, 1991). Breslow and Clayton (1993) used
penalized quasi-likelihood to conduct estimation. For a
thorough treatment of theory and computation for the random
effects models, see Pinheiro and Bates (2000).

In this paper, we introduce heavy-tailed regression models
in the framework of longitudinal data using copulas. A
copula is a multivariate distribution with uniform marginal
distributions on the interval (0, 1). As tools to construct
multivariate distributions, copulas are increasingly explored in
the statistics, econometrics, finance and insurance literature.
Copulas separate the multivariate joint distribution into two
parts: one describing the interdependency of the probabilities,
the other describing the marginal distributions only. Through
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