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1. Introduction

Regime-switching models are an important class of financial
time series models. A key feature of regime-switching models is
that model parameters are functions of a hidden Markov chain
whose states represent hidden states of an economy, or different
stages of business cycles. Consequently, regime-switching mod-
els can incorporate structural changes of economic conditions. The
history of the regime-switching models can be traced back to the
early works of Quandt (1958) and Goldfeld and Quandt (1973),
where a class of regime-switching regression models was applied
to model nonlinear economic data. The idea of regime-switching
also appeared in some early works of nonlinear time series anal-
ysis, (see Tong (1983)). Hamilton (1989) pioneered applications
of regime-switching models in economics and econometrics. Em-
pirical studies reveal that regime-switching models fit economic
and financial time series well and explain some important stylized
facts of these series. Moreover, regime-switching models have di-
verse applications in finance. Some of these applications include

* Corresponding author. Tel.: +61 2 9850 8573; fax: +61 2 9850 9481.
E-mail addresses: kennylcc@gmail.com (C.C. Liew), Ken.Siu@mg.edu.au,
ktksiu2005@gmail.com (T.K. Siu).

0167-6687/$ - see front matter © 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.insmatheco.2010.08.003

Pliska (1997) and Elliott et al. (2001) for short rate models, Elliott
and Hinz (2002) for portfolio analysis, Naik (1993), Guo (2001) and
Elliott et al. (2005) for option valuation, Elliott et al. (1998) for
volatility estimation, and others.

Recently there is a growing interest in the use of regime-
switching models for option valuation. Regime-switching models
incorporate the impact of structural changes in economic condi-
tions on option valuation. This is particularly important for valu-
ing long-lived options, such as options embedded in equity-linked
securities and participating life insurance products. However, be-
cause of the additional source of uncertainty induced by regime-
switching, the market in a regime-switching model is, in general,
incomplete. Consequently, there is more than one equivalent
martingale measure for valuation. In this case, the standard
Black-Scholes-Merton option pricing argument cannot be applied
and the question of which equivalent martingale measure one
should choose for valuation becomes important. Different meth-
ods have been developed to value options in an incomplete market.
Follmer and Sondermann (1986), Féllmer and Schweizer (1991)
and Schweizer (1996) introduced the minimization of a quadratic
function of hedging errors for valuation. Hodges and Neuberger
(1989) developed a utility-based indifference pricing approach in
an incomplete market. Davis (1997) used traditional economic
equilibrium arguments to value options and formulated the prob-
lem as a utility maximization problem. Gerber and Shiu (1994)
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pioneered the use of the Esscher transform, a well-known tool in
actuarial science, to value options in an incomplete market. The
Esscher transform provides a convenient way to select an equiva-
lent martingale measure. Gerber and Shiu justified the use of the
Esscher transform for option valuation by the maximization of an
expected power utility of an economic agent. Elliott and Madan
(1998) introduced an extended Girsanov’s principle to select an
equivalent martingale measure in a discrete-time financial model.
The extended Girsanov’s principle provides a general method to
value options under discrete-time econometric time series mod-
els. Badescu et al. (2009) established a relationship between the
Esscher transform valuation principle, the extended Girsanov’s val-
uation principle and consumption-based equilibrium asset pricing
models.

Some methods for option valuation specifically geared to
regime-switching models have been introduced in the literature.
Guo (2001) used a set of “fictitious” assets, namely, change-of-
state contracts, to complete a continuous-time, regime-switching
market. The theoretical basis of these change-of-states contracts
is the Arrow-Debreu securities. Elliott et al. (2005) proposed the
use of the Esscher transform to value options in a continuous-time,
regime-switching economy and justified its use by the minimal
martingale entropy measure. Siu (2008) further justified the Ess-
cher transform approach for option valuation in a continuous-time
regime-switching model using a saddle-point result, (a special case
of the Nash equilibrium), arising from a two-person, zero-sum,
stochastic differential game. Most previous work assumes that the
Markov chain modulating a regime-switching model is observ-
able. However, in practice, the “true” state of an underlying econ-
omy may not be observed. Therefore, it is of practical relevance to
relax the assumption that the chain is observable. Ishijima and Ki-
hara (2005) studied the option valuation problem in a discrete-
time regime-switching model governed by a hidden Markov chain.
They employed the locally risk-neutral valuation relationship of
Duan (1995) to determine an equivalent martingale measure for
valuation.

In this paper, we investigate an option valuation problem in a
discrete-time hidden Markov regime-switching Gaussian model.
The model’s parameters, including the market interest rate, the
appreciation rate and the volatility of a risky asset are governed
by a discrete-time, hidden Markov chain. The states of the chain
represent different states of an economy. We consider below two
approaches to determine an equivalent martingale measure. First,
we consider the use of the Esscher transform to choose an equiva-
lent martingale measure. This choice is justified by the maximiza-
tion of an expected power utility of an economic agent. Second
we study an extended Girsanov’s principle for selecting an equiv-
alent martingale measure. It is shown that the two approaches
lead to the same pricing result. We give a recursive filter for the
hidden Markov chain and estimates of model parameters using a
filter-based EM algorithm. We also derive predictors for the hid-
den Markov chain and some related quantities. These quantities
are used to estimate a price of a standard European call option.
Numerical examples based on real financial data are given to illus-
trate the implementation of the proposed method. We also provide
numerical comparisons of the European call prices obtained from
the proposed estimation method, the call prices arising from an an-
alytic formula and from the Black-Scholes-Merton model.

The approach considered here is different from that in Ishijima
and Kihara (2005). We adopt the Esscher transform while the val-
uation method in Ishijima and Kihara (2005) is based on the lo-
cal risk-neutral valuation considered Duan (1995), which may be
traced back to an economic equilibrium approach for asset pricing
in a pure exchange economy pioneered by Lucas (1978). Indeed,
the Esscher transform provides a more flexible way to price op-
tions than the local risk-neutral valuation approach; the former can

be applied to any return distribution with a finite moment gener-
ation function while the latter can be used only when the return
distribution is normal. However, for illustration we consider only
the Esscher transform approach for option valuation in a hidden
Markov regime-switching Gaussian model. Although the same val-
uation principle can be applied to a general hidden Markov regime-
switching non-Gaussian model. This may provide a possible topic
for future research. We also justify the use of the Esscher trans-
form to option valuation using the extended Girsanov’s principle
in Elliott and Madan (1998), which is supported by weak-form ef-
ficient hedging strategies minimizing the variance of risk-adjusted
costs of hedging. We also establish the consistency between the
Esscher transform approach, the local-risk-neutral-valuation ap-
proach, the extended Girsanov principle and the utility maximiza-
tion approach in the context of hidden Markov asset price models.
This consistency was not explored in Ishijima and Kihara (2005).
Furthermore, we adopt a different filtering approach to estimate
the hidden states and the parameters of the hidden Markov model.
The filtering methods considered here are based on those devel-
oped in Elliott et al. (1994). Finally, we derive an estimate for a
price for a standard European call option which is more easy to
implement than that in Ishijima and Kihara (2005).

The paper is organized as follows: The next section presents the
discrete-time, hidden Markov regime-switching Gaussian model.
In Section 3, we discuss the use of the Esscher transform and the
extended Girsanov's principle to determine equivalent martingale
measures. In Section 4, we derive filters and predictors that are re-
quired to derive an estimate for the price of an option. Section 5
gives the estimate for the price based on observed price informa-
tion. Section 6 presents and discusses the numerical examples. The
final section summarizes the results.

2. The model

In this section, we present the hidden Markov regime-switching
Gaussian model for asset prices in a discrete-time economy. Let
7 be the time index set {0, 1,2,...,T}, where T < oo, which
represents time points at which economic activities take place. In
our simplified world, the economy has two primitive securities,
namely, a bond and a risky asset. These securities can be traded
over time in the horizon 7. Consider a complete probability
space (£2, ¥, P), where P is a real-world probability measure. We
suppose that the probability space (£2, #, P) is rich enough to
incorporate uncertainties due to fluctuations in market prices and
changes in economic conditions over time.

First, we describe the evolution of the hidden state of the
economy over time. Let X := {X; | t € 7} be a discrete-time,
finite-state, hidden Markov chain on (§2, £, P) with state space
8 = {s1, S2, ..., Sy}. Without loss of generality, as in Elliott et al.
(1994), we identify the state space of the Markov chain X with the
finite set of standard unit vectors & := {e,e,, ..., ey}, where
e=(0,...,1,...,0) € %" so (e;, e;) = §j, the Kronecker delta.
Here y’ is the transpose of a vector, or a matrix, y, and (-, -) is the
scalar product in V. We call & the canonical state space of the
chain X.

We suppose further that the Markov chain X is time-homo-
geneous. The probability law of X is specified by its transition
probabilities and initial distribution. For eachi,j = 1,2, ..., N, let

aii = PXer1 =€ | Xe = ).

Write A for the transition probability matrix [aj];j=1,2, ~ of the
chain X under P. Let & := (711, 72, ..., Ty)’ € RN, where

7w =PXo = &),

so that mt is the initial distribution of the chain X. We suppose that
the chain X is stationary.
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