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a b s t r a c t

In 1988, Shanthikumar proved that the sum of a geometrically distributed number of i.i.d. DFR random
variables is also DFR. In this paper, motivated by the inverse problem, we study monotonicity properties
related to defective renewal equations, and obtain that if a compound geometric distribution is DFR, then
the random variables of the sums are NWU (a class that contains DFR). Furthermore, we investigate some
applications of risk theory and give a characterization of the exponential distribution.
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1. Introduction and preliminaries

Let X1, X2, . . . be an independent and identically distributed
(i.i.d.) sequence of random variables supported on [0,∞), with
continuous distribution function (d.f.) F(x) = Pr(X ≤ x), F(0) = 0
and mean µ < ∞. Let also N be a counting random variable
independent of Xi, i = 1, 2, . . . , with Pr(N = n) = (1 −

φ)φn, n = 0, 1, 2, . . . (0 < φ < 1). Thus, the compound
geometric distribution G(x) of the random variable SN = X1 +X2 +

· · · + XN is

G(x) = Pr(SN ≤ x) = (1 − φ)

∞−
n=0

φnF∗n(x), x ≥ 0, (1)

where F∗n(x) = Pr(X1 + X2 + · · · + Xn ≤ x) is the nth-fold
convolution of F with itself. The density of G is

g(x) = (1 − φ)

∞−
n=1

φnf ∗n(x), x ≥ 0,

where f (x) is the density associated with F(x).
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Compound geometric distributions play an important role in
terminating renewal processes, reliability, queueing, branching
processes and insurance (see Feller (1971), Gertsbakh (1984),
Kalashnikov (1997), Rolski et al. (1999), Asmussen (2000),
Willmot and Lin (2001) and references therein). For example, the
equilibrium waiting time in the G/G/1 queue and the probability
of non-ruin in the renewal risk model have a compound geometric
distribution.

The tail of G(x) is defined by

G(x) = 1 − G(x) = (1 − φ)

∞−
n=1

φnF∗n(x), (2)

where F∗n(x) = 1 − F∗n(x). This function satisfies the defective
renewal equation (d.r.e.)

G(x) = φ

∫ x

0
G(x − t)dF(t)+ φF(x), (3)

whose solution is

G(x) =
φ

1 − φ

∫ x

0−

F(x − t)dG(t), (4)

where the interval in the range of integration above is closed (see
Willmot and Lin (2001, p. 156)). Note that G(x) has a mass point at
0, G(0) = 1 − φ.
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Next, we recall the definition of some reliability classes of
distributions. A d.f. F with tail F(x) = 1 − F(x), x ≥ 0, is said to be
decreasing (increasing) failure rate or DFR (IFR) if F(x + y)/F(x) is
nondecreasing (nonincreasing) in x for any y ≥ 0. If F is absolutely
continuous with density f , then it is DFR (IFR) when the failure
rate λF (x) = f (x)/F(x) is nonincreasing (nondecreasing). The
exponential is the only distribution that is both DFR and IFR, and
a mixture of exponential d.f. is always DFR, see Willmot and Lin
(2001, Chapter 2).

A d.f. F is called new worse (better) than used or NWU (NBU)
if F(x + y) ≥ (≤)F(x)F(y) for every x, y ≥ 0. The DFR (IFR)
class of distributions is a subclass of the NWU (NBU) class. The
mean residual lifetime of F is defined by rF (x) =


∞

x F(y)dy/F(x).
A d.f. F is called increasing (decreasing) mean residual lifetime or
IMRL (DMRL) if rF (x) is nondecreasing (nonincreasing) in x. The
DFR (IFR) class is also a subclass of the IMRL (DMRL) class. Finally,
F is new worse (better) than used in expectation or NWUE (NBUE)
if


∞

x F(t)dt ≥ (≤)µF(x) for every x ≥ 0. The IMRL (DMRL) and
NWU (NBU) classes are both subclasses of the NWUE (NBUE) class.
The suggested references on these classes are the books by Barlow
and Proschan (1981) and Willmot and Lin (2001).

In the paper of Shanthikumar (1988), it is obtained that if F is
DFR, then G is also DFR. One of the main purposes of this paper is
the study of the inverse problem, namely, the characterization of F
under the hypothesis that G is DFR. A similar problem was studied
by Chen (1994), who has derived the relation between renewal
function and excess lifetime in renewal theory. The paper is
organized as follows: In Section 2, we present general inequalities
with the use of defective renewal equation, under a hypothesis of
ratiomonotonicity. Under this perspective, we present in Section 3
some applications in risk theory. In particular, we prove that if
G is DFR (IFR), then F is NWU (NBU). We also obtain that if G
is IMRL (DMRL), then F is NWUE (NBUE). Moreover, we give a
new characterization of the exponential distribution, using the
compound geometric distribution. Finally, in Section 4 we discuss
through an example that G can be IFR.

2. Main results

Letm(x) be a continuous nonnegative function that satisfies the
d.r.e.

m(x) = φ

∫ x

0
m(x − t)dF(t)+ υ(x), (5)

where 0 < φ < 1 and υ(x) ≥ 0 is locally bounded. The general
form for the solution of m(x) in (5), which is vanishing for x < 0
and bounded on finite intervals, is given by

m(x) =
1

1 − φ

∫ x

0−

υ(x − t)dG(t), (6)

where the interval in the range of integration above is closed (see
Asmussen (1987, Chapter VI)). We also consider a functionm(x, y)
that satisfies the d.r.e.

m(x, y) = φ

∫ x

0
m(x − t, y)dF(t)+ υ(x + y), (7)

whose solution is

m(x, y) =
1

1 − φ

∫ x

0−

υ(x + y − t)dG(t). (8)

We first give a monotonicity result for the ratiom(x, y)/m(x + y).

Lemma 2.1. If g(x+ t1)/m(x+ t2) is nonincreasing (nondecreasing)
in x for any t2 ≥ t1 ≥ 0, then m(x, y)/m(x + y) is nondecreasing
(nonincreasing) in x.

Proof. Let g(x + t1)/m(x + t2) be nonincreasing in x for any t2 ≥

t1 ≥ 0. By (6) and (8), we have

m(x, y) = m(x + y)−
1

1 − φ

∫ x+y

x
υ(x + y − t)dG(t). (9)

Dividing bym(x + y), it follows

m(x, y)
m(x + y)

= 1 −
1

1 − φ

∫ x+y

x

υ(x + y − t)
m(x + y)

g(t)dt

= 1 −
1

1 − φ

∫ y

0
υ(y − t)

g(x + t)
m(x + y)

dt. (10)

Thus, by hypothesis, the result follows by (10). In the case where
g(x + t1)/m(x + t2) is nondecreasing in x for any t2 ≥ t1 ≥ 0, the
proof is similar. �

Using the result of the above lemma and the d.r.e. for m(x, y),
we derive inequalities for the function υ(x).

Theorem 2.1. If g(x + t1)/m(x + t2) is nonincreasing (nondecreas-
ing) in x for any t2 ≥ t1 ≥ 0 and m(x + y)/m(x) is nondecreasing
(nonincreasing) in x for any y ≥ 0, then

υ(x + y) ≥ (≤)
υ(x)υ(y)
υ(0)

. (11)

Proof. Let g(x + t1)/m(x + t2) be nonincreasing in x for any t2 ≥

t1 ≥ 0 and m(x + y)/m(x) nondecreasing in x for any y ≥ 0.
Dividing (7) by m(x + y), we obtain

m(x, y)
m(x + y)

= φ

∫ x

0

m(x − t, y)
m(x + y)

dF(t)+
υ(x + y)
m(x + y)

,

or equivalently,

m(x, y)
m(x + y)

= φ

∫ x

0

m(x − t, y)
m(x + y − t)

m(x + y − t)
m(x + y)

dF(t)+
υ(x + y)
m(x + y)

.

By hypothesis and Lemma 2.1, the ratio m(x, y)/m(x + y) is
nondecreasing in x for any y ≥ 0, and the ratiom(x+y−t)/m(x+y)
is nonincreasing in x ≥ t ≥ 0 for any y ≥ 0. Hence, we have

m(x, y)
m(x + y)

≤ φ
m(x, y)
m(x + y)

∫ x

0

m(x + y − t)
m(x + y)

dF(t)+
υ(x + y)
m(x + y)

≤ φ
m(x, y)
m(x + y)

∫ x

0

m(x − t)
m(x)

dF(t)+
υ(x + y)
m(x + y)

.

By Eq. (5), it follows that

φ

∫ x

0

m(x − t)
m(x)

dF(t) = 1 −
υ(x)
m(x)

. (12)

Thus,

m(x, y)
m(x + y)

≤
m(x, y)
m(x + y)

[
1 −

υ(x)
m(x)

]
+
υ(x + y)
m(x + y)

,

and after some rearrangements, we obtain

υ(x)
m(x)

m(x, y)
m(x + y)

≤
υ(x + y)
m(x + y)

.

Using again the monotonicity ofm(x, y)/m(x + y), it follows

υ(x)
m(x)

m(0, y)
m(0 + y)

≤
υ(x + y)
m(x + y)

,

or equivalently, sincem(0, y) = υ(y) by (7),

m(x + y)
m(x)m(y)

≤
υ(x + y)
υ(x)υ(y)

. (13)
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