
Insurance: Mathematics and Economics 42 (2008) 127–146
www.elsevier.com/locate/ime

Modelling dependence
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Abstract

A new way of choosing a suitable copula to model dependence is introduced. Instead of relying on a given parametric family of copulas
or applying the other extreme of modelling dependence in a nonparametric way, an intermediate approach is proposed, based on a sequence of
parametric models containing more and more dependency aspects. In contrast to a similar way of thinking in testing theory, the method here,
intended for estimating the copula, often requires a somewhat larger number of steps. One approach is based on exponential families, another
on contamination families. An extensive numerical investigation is supplied on a large number of well-known copulas. The method based on
contamination families is recommended. A Gaussian start in this approximation looks very promising.
c© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The classical way to deal with dependence for a multivariate
distribution is to assume multivariate normality and to estimate
the correlation coefficients. Also outside the normal model
linear correlation is often taken as a tool to measure
dependence. However, capturing only linear correlation is far
too restricted. Other forms of dependence are important too.
In particular in finance and insurance (see e.g. Cherubini et al.
(2004), Embrechts et al. (2002, 2003), McNeil et al. (2005)),
but also in other areas like for instance hydrology (see e.g.
Genest and Favre (2007)), there is last year’s increased attention
given to going beyond linear dependence.

A second problem with linear correlation is that the
marginal distributions are mixed up with the dependence.
Sklar’s (1959, 1996) theorem shows that for continuous
multivariate distribution functions, the univariate margins and
the multivariate dependence structure can be separated, and
the dependence structure can be represented by a so called
copula. This copula is the multivariate distribution function
of the random vector obtained by applying on each of the
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components its probability integral transformation, thus giving
them uniform marginals. Embrechts et al. (2003) remark: “since
linear correlation is not a copula-based measure of dependence,
it can often be quite misleading and should not be taken as the
canonical dependence measure”. For a lot of results on copulas
see also Joe (1997), Nelsen (1999), Cherubini et al. (2004),
McNeil et al. (2005).

In view of Sklar’s theorem, the study of multivariate
dependence can be performed in two distinct steps: estimating
the marginal distributions and estimating the “intrinsic”
dependence structure. The first step is very well-known. Here
we investigate the second step. What should be done, is
choosing an appropriate (family of) copula(s).

There are many families of copulas proposed in the
literature, each with its own merits. One may rely on a
parametric family of copulas, like the Frank copulas or the
Gumbel copulas, etc. Having chosen the family one (only)
needs to estimate the parameter(s) of this family. However, the
choice of the parametric family is not that clear. A possible
way-out is to check whether a certain copula or family of
copulas is suitable. Goodness-of-fit tests for the simple null
hypothesis of a given copula, or the composite hypothesis of a
parametric family of copulas are developed, see e.g. Fermanian
(2005), Panchenko (2005) and references therein. But in case
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of rejection, it is not clear what to do. In Biau and Wegkamp
(2005) the problem of finding a particular copula, given a
(parametric) class of candidate copulas is attacked. They restrict
attention to copulas with a bounded density. In their oracle
inequality the upper bound consists of a model error term,
expressing the distance between the true density and the
parametric family of candidate copulas, and a second part
giving the stochastic error or estimation error. We will also split
up the total error in the model error and the stochastic error, see
(2.7), (2.8) and (2.11) and (2.12).

The advantage of a parametric family is that only one
(or a few) parameters have to be estimated, thus obtaining a
relatively small stochastic error. The disadvantage might be the
restriction to one family and a possible gap between the true
density and the chosen family. The latter can be avoided by
the other extreme of a nonparametric approach. But in that
case the estimation step will lead to large errors, unless we
have an enormous amount of observations. Here we propose
an intermediate approach. This intermediate approach consists
of two steps: a modelling step and an estimation step. In the
modelling step a sequence of parametric copula models is
introduced, approximating the true copula more and more. In
the estimation step out of this sequence of parametric models
a suitable one is selected (using a model selection rule) and
subsequently the parameters within the selected model are
estimated. To avoid too many technicalities we concentrate in
this paper on bivariate distributions. Moreover, we concentrate
in this paper on the modelling step. The estimation step will
be treated in a forthcoming paper. Obviously, firstly it should
be made clear that the modelling step has good approximation
properties. Therefore, the aim of the present paper is to
investigate the approximation error in the modelling step.

To model (and afterwards estimate) the true copula density, a
sequence of parametric models is introduced, containing more
and more dependency aspects. The method has a parametric
flavour, but considering higher and higher dimensions we get
in the limit the true density and in this way the method
is “nonparametric”. A somewhat similar approach is applied
successfully in testing theory, see e.g. Kallenberg and Ledwina
(1999) and Janic-Wróbleska et al. (2004). However, as a rule,
in testing theory heavy forms of dependence are detected
easily and therefore main attention is on copulas not too far
from independence. In estimation theory the whole scope of
dependent copulas should be considered carefully. This makes
the modelling step more difficult.

Starting point is a given (family of) copula(s). For instance,
one may simply start with the uniform density on the unit
square (corresponding to independence). Another prominent
starting point is the family of Gaussian copulas. Other favorite
starting points of families of copulas can be used as well.
Dependency aspects not covered by the starting point are
added by subsequent parametric steps. In this way the method
automatically improves an a priori chosen parametric family. In
particular, when the starting point is not too far away from the
true copula, only a few steps are needed to get a sufficiently
small model error.

Well-known families of parametric models for the subse-
quent parametric steps are so called exponential families. For
properties of exponential families we refer to Barndorff-Nielsen
(1978). Approximation of (univariate) densities by exponen-
tial families has been done e.g. by Barron and Sheu (1991),
Yang and Barron (1998) and Castellan (2003). Contamination
families are candidates as well. The advantage of exponential
families over contamination families is that the density is auto-
matically positive and integrates to 1. However, the estimation
step is more complicated. Moreover, the marginal distributions
are no longer uniform distributions, implying that fitting covari-
ances is not equivalent to fitting correlations.

In general, two random variables X and Y are independent
if and only if cov( f1(X), f2(Y )) = 0 for all f1 and f2 ranging
over a separating class of functions (see e.g. Breiman (1968),
p. 165 ff.). Eubank et al. (1987) have considered a measure of
association, called φ2 (see also Lancaster (1969), p. 91 ff.). Let
U = FX (X), V = FY (Y ), where FX and FY are the marginal
distribution functions of X and Y , respectively, and let b j be
the j th Legendre polynomial on (0, 1). If φ2 < ∞, then the
condition cov(br (U ), bs(V )) = 0 for all r, s ≥ 1 implies
that X and Y are independent. So, under this mild condition,
the Legendre polynomials form a separating class. Therefore,
both the exponential families and the contamination families
are based on suitable Legendre polynomials.

The parametric steps are designed to fit Ebr (U )bs(V ).
For the contamination family this is equivalent to fitting
cov(br (U ), bs(V )) or the correlation coefficient ρ(br (U ),
bs(V )). For instance, when r = s = 1 this concerns the
linear correlation of the copula. Within the exponential family
the maximum likelihood estimator produces the required fit of
Ebr (U )bs(V ). At the same time this member of the exponential
family is closest in terms of Kullback Leibler information to the
true density. For the contamination family moment estimators
are invoked. They are linked up with the L2-distance. Both for
the exponential families and for the contamination families it
holds that the higher the dimension of the family, the better the
fit and hence the smaller the model error. On the other hand, the
higher the dimension, the more parameters have to be estimated
and the larger the stochastic error due to the estimation part.

It turns out that finding those parameters in the exponential
family that fit Ebr (U )bs(V ) is much more difficult than the
corresponding step in the contamination family. In the k-
parameter exponential family k (rather complicated) equations
should be solved, while the contamination family gives explicit
expressions for the parameters involved. Moreover, fitting
Ebr (U )bs(V ) in the contamination family gives automatically
a fit of the covariance and correlation coefficient. Also the
reduction in model error due to taking a larger dimension has a
far more easy form for the contamination model.

The paper is organized as follows. In Section 2 the
exponential families and the contamination families are
introduced. Properties of these families in terms of Kullback
Leibler information for the exponential families and L2-
distance for the contamination families are derived. Moreover,
the decomposition of the total error in model error and
stochastic error is discussed. After introduction of the
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