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a b s t r a c t

Singular value decomposition (SVD) has numerical advantages over other least squares modeling
techniques because it requires the summation of basis functions only, rather than of their squares and
products. It also transforms the original independent variables to an orthogonal system of variables, thus
exposing issues of collinearity and singularity. The SVD approach by itself, however, is simply a
decomposition of this original matrix of independent variables, and does not refer to observations
affected by errors. With no information on observational errors, it does not include a method for
rejecting model coefficients that have little statistical significance. Eliminating singular values to reduce
model dimensionality in the least squares application of SVD can thus be done on the basis of statistical
error tests, a procedure not directly available to many other applications of the SVD method. A statistical
backward elimination procedure applied directly to the transformed SVD principal components
compares well with a stepwise procedure applied to the original untransformed coordinates, allowing
advantage to be taken of the numerical superiority of SVD. On the other hand, it is important to
understand that the approaches taken by SVD and ordinary least squares (OLS) in handling singularities
are quite different, and in these cases can lead to different solutions. Analyses of several singular and
near-singular least squares matrices in the literature, as well as two real-world examples of modeling
electric field, demonstrate the similarities and differences between the two least squares approaches, and
the benefit of a statistical rejection procedure in both of them.

Crown Copyright & 2013 Published by Elsevier Ltd. All rights reserved.

1. Introduction

Many programs now use singular value decomposition (SVD) to
obtain least squares model coefficients by means of principal
component analysis. The SVD approach is recognized to be a very
stable solution to the least squares problem, and provides infor-
mation on the singularity or near-singularity of the least squares
sums of squares and products matrix, and on the collinearity or
near-collinearity of the model variables. It is therefore easy to
eliminate principal components based on very small singular
values resulting from imprecise calculations based on the compu-
ter word size available. However, SVD is fundamentally a matrix
decomposition and therefore does not in itself look at the errors in
the dependent variable or allow one to eliminate variables based
on a statistical test. In fact, in many applications using SVD,
observational errors do not even play a major role. SVD is, or at
least was originally, primarily aimed at the solution of a system of
linear equations. Of course, the normal equations of linear least
squares are also a system of linear equations, but they have

statistical ramifications as well. The observational equations have
an attached error, and the solution of the system depends on the
statistical properties of that error. One can, for instance, determine
the scatter or standard error of estimate about the model, and use
that to estimate the error in the model coefficients. One may then
decide, on the basis of a statistical test, that a certain subset of the
modeled coefficients is significant (at a given level of significance),
whereas the others are not. Using a procedure such as this
provides a statistically meaningful way of choosing which singular
values are not appropriate for inclusion in the model and which
therefore can be eliminated to reduce the model dimensionality.
By eliminating insignificant coefficients, dimensionality reduction
gives a more accurate standard error of estimate.

Least squares programs that do not use SVD solve a system of
normal equations which involve squares and products of basis
functions rather than simply the basis functions themselves as in
SVD. For that reason, the SVD approach is numerically superior to
that of the traditional least squares approach. However, many of
these traditional programs allow for statistical coefficient rejection
procedures, and therefore respond well (or can easily be modified
to respond well) to singularities and other issues of poor data or
data design. Their modeling philosophy is different from that of
SVD, though, in that they attempt to minimize the size of the
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model rather than estimate coefficients of every possible variable
initially considered in the design. This paper will briefly review the
two approaches and discuss through examples the similarities and
differences of the two techniques. The traditional least squares
program used for comparison purposes in this paper is called
STEPREG and uses a stepwise regression procedure for coefficient
rejection introduced by Efroymson (1960), and is applied to the
original data coordinates. A second program is described in this
paper which uses a backward elimination procedure, and is
applied to the transformed principal coordinates of SVD. Coeffi-
cient rejection in this case is done by eliminating the correspond-
ing singular values.

The mathematics of singular value decomposition and its
relationship to least squares analysis are well explained in detail
by many authors, including Forsythe et al. (1977), Lawson and
Hanson (1974), Menke (1989), Nash (1990), and Rawlings et al.
(1998).

In this paper, Sections 2 and 3 describe singular value decom-
position and its application to the method of least squares,
respectively. The stepwise regression procedure for eliminating
statistically insignificant coefficients in ordinary least squares
(OLS) is described in Section 4. The analysis of principal compo-
nents obtained by means of SVD is presented in Section 5, and a
statistical backward elimination procedure that is applied directly
to the SVD principal component coefficients to determine which
singular values should be zeroed is suggested in Section 6.
Illustrative examples of the issues and techniques described in
this paper and a comparison of the SVD and OLS methods are
presented in Section 7. Throughout this paper, references are made
to specific routines, which are required for running the examples
described in Section 7. Fortran programs and the data used in
Section 7 may be obtained from Robyn Fiori (Robyn.Fiori@NRCan-
RNCan.gc.ca).

2. Singular value decomposition (SVD)

The (reduced or thin) singular value decomposition (SVD) of an
n�m real matrix X is given by

X¼USVT ð1Þ
where U is an n�m matrix with orthonormal columns, S is an
m�m diagonal matrix of the singular values of X, and V is an
m�m orthogonal matrix (Golub and Van Loan, 1996, Section 2.5.4;
Miller, 2002, Section 2.2; Press et al., 1992, Section 2.6; Rawlings
et al., 1998, Section 2.8). The superscript T indicates the matrix
transpose. In modeling work, X is the design matrix, m is the
number of basis functions, n is the number of observations, and
usually n≥m. (This latter condition is discussed in Section 3;
however, when nom Eq. (1) is still valid but m−n columns of U
are not normalized but zero, as are the corresponding singular
values.) Since U is column orthonormal UTU¼ Im, the m�m
identity matrix, and since V is orthogonal VTV¼ VVT ¼ Im. If uj

and vj are the jth column vectors of U and V, respectively, and sj is
the jth diagonal element of S, Eq. (1) is equivalent to a summation
of m rank-one matrices

X¼ ∑
m

j ¼ 1
ujsjvT

j ð2Þ

The diagonalizing aspect of SVD can be better appreciated by
pre- and post-multiplying Eq. (1) by UT and V, respectively

S¼UTXV ð3Þ
which is equivalent to

sj ¼ uT
j Xvj; j¼ 1;…;m ð4Þ

If X is of rank r, m−r of the singular values will be zero. In fact, a
threshold depending on the computer word size is usually chosen,
and all singular values less than this threshold are set to zero, so
that often even more than m−r of the singular values will be zero.
Even singular values larger than the threshold may be set to zero,
of course, and it will be shown in Section 6 that a statistical test
may be used to determine which singular values may be granted
that distinction.

V is a transformation matrix that rotates/reflects the matrix X
into a matrix whose columns are orthogonal. This can be seen by
post-multiplying Eq. (1) by V

XV¼US ð5Þ
This equation is equivalent to

Xvj ¼ sjuj; j¼ 1;…;m ð6Þ
Since the sjuj are orthogonal, the columns of XV are orthogonal.
This will be used in Section 5, where the matrix XV will be
referred to as W.

The columns of V are in fact unit normal vectors in the
transformed coordinate system. This will be shown at the end of
Section 5 in connection with Eqs. (36) and (37).

The Fortran SVD programs used in this analysis are SVDCMP,
SVDVAR, and SVBKSB, taken from Numerical Recipes (Press et al.,
1992). However, there was a bug in our version of the Numerical
Recipes subroutine SVDCMP, and a corrected version was down-
loaded from http://info.ifpan.edu.pl/�kisiel/struct/rgdfit/rgdfit.for.

The condition number κ of a matrix can be defined as the ratio
of the largest singular value to the smallest. When κ−1 approaches
the computer's floating point precision, the accuracy of floating
point calculations will disappear. Double precision on a 32-bit
computer (64-bit word size with an implicit 53-bit mantissa) is
approximately 10−16. When using double precision, the threshold
mentioned above will be taken as something close to 10−16. Press
et al. (1992, Section 2.6, p. 56) state that if the small singular values
(those below a given threshold) have not been zeroed, then the
SVD technique is “just as ill-conditioned as any direct method, and
you are misusing SVD.” They also suggest that choosing the
threshold is somewhat subjective: “SVD cannot be applied blindly,
then. You have to exercise some discretion in deciding at what
threshold to zero the small [singular values].” These statements
will be considered further in Sections 7.2 and 7.3.

Alternative factorizations and decompositions of X and of the
least squares sums of squares and products matrix XTX (see Eq. (8)
in the next section), for purposes of orthogonal least squares
reduction procedures, have been described by Miller (2002,
Section 2.1, 2.2).

3. Least squares

A least squares problem may be represented by the matrix
equation

Y¼Xβþ ϵ ð7Þ
where Y is an n�1 vector of observations (or data), β is an m�1
vector of unknown coefficients or parameters to be estimated, X is
an n�m design matrix, i.e. matrix of the m (non-stochastic)
coordinates or basis functions in the model evaluated at the n
observation points, and ϵ is an n�1 vector of unknown random
observational errors. The problem is then to estimate the model
coefficients β by minimizing ϵ2 with respect to β. It is assumed
here that there are no errors in the elements of X and that the
errors in Y are independently and normally distributed with zero
mean and unknown but constant variance. It is assumed also that
n4m, i.e. the least squares problem is overdetermined. If nom
the problem would be underdetermined, and it would be
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