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Pair-copula constructions of multiple dependence
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Abstract

Building on the work of Bedford, Cooke and Joe, we show how multivariate data, which exhibit complex patterns of dependence in the tails,
can be modelled using a cascade of pair-copulae, acting on two variables at a time. We use the pair-copula decomposition of a general multivariate
distribution and propose a method for performing inference. The model construction is hierarchical in nature, the various levels corresponding to
the incorporation of more variables in the conditioning sets, using pair-copulae as simple building blocks. Pair-copula decomposed models also
represent a very flexible way to construct higher-dimensional copulae. We apply the methodology to a financial data set. Our approach represents
the first step towards the development of an unsupervised algorithm that explores the space of possible pair-copula models, that also can be applied
to huge data sets automatically.
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1. Introduction

Inspired by the work of Joe (1996), Bedford and Cooke
(2001b, 2002), and Kurowicka and Cooke (2006), we show
how multivariate data can be modelled using a cascade of
simple building blocks called pair-copulae. This probabilistic
construction represents a radically new way of constructing
complex multivariate highly dependent models, which parallels
classical hierarchical modelling (Green et al., 2003). There, the
principle is to model dependency using simple local building
blocks based on conditional independence, e.g., cliques in
random fields. Here, the building blocks are pair-copulae.
The modelling scheme is based on a decomposition of a
multivariate density into a cascade of pair copulae, applied on
original variables and on their conditional and unconditional
distribution functions.

In this paper, we show that the pair-copula decomposition
of Bedford and Cooke (2002) can be a simple and powerful
tool for model building. While it maintains the logic of
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building complexity using simple elementary bricks, it does
not require conditional independence assumptions when these
are not natural. We present some of the theory of Bedford
and Cooke (2001b, 2002) from a practical point of view, as a
general modelling approach, concentrating on likelihood-based
inference based on n variables repeatedly observed, say over
time.

Kurowicka and Cooke (2006) approach model inference
using partial correlations and the determinant of the correlation
matrix as a measure of linear dependence. As an alternative,
we propose to rely on a maximum pseudo-likelihood approach
for parameter estimation of the pair-copula decomposition.
An algorithm is given for evaluating the pseudo-likelihood
efficiently based on any combination of pair-copulae. This
pseudo-likelihood is based on the ranks of the observations. We
illustrate this approach for a four-dimensional financial data set
for bivariate Student and/or Clayton copulae as building blocks.

Building higher-dimensional copulae is generally recog-
nised as a difficult problem. There are a huge number of para-
metric bivariate copulas, but the set of higher-dimensional cop-
ulae is rather limited. There have been some attempts to con-
struct multivariate extensions of Archimedean bivariate copu-
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lae; see, e.g., Bandeen-Roche and Liang (1996), Joe (1997),
Embrechts et al. (2003), Whelan (2004), Savu and Trede (2006)
and McNeil (in press). Meta-elliptical copulae (Fang et al.,
2002) also offer some flexibility for multivariate modelling.
However, it is our opinion that the pair-copula decomposition
treated in this paper represents a more flexible and intuitive way
of extending bivariate copulae to higher dimensions.

The paper is organised as follows. In Section 2 we introduce
the pair-copula decomposition of a general multivariate
distribution and illustrate this with some simple examples. In
Section 3 we see the effect of the conditional independence
assumption on the pair-copula construction. Section 4 describes
how to simulate from pair-copula decomposed models. In
Section 5 we describe our estimation procedure, while in
Section 6 we discuss aspects of the model selection process.
In Section 7 we apply the methodology and discuss limitations
and difficulties in the context of a financial data set. Finally,
Section 8 contains some concluding remarks.

2. A pair-copula decomposition of a general multivariate
distribution

Consider a vector X = (X1, . . . , Xn) of random variables
with a joint density function f (x1, . . . , xn). This density can be
factorised as

f (x1, . . . , xn) = fn(xn) · f (xn−1|xn)

· f (xn−2|xn−1, xn) · · · f (x1|x2, . . . , xn), (1)

and this decomposition is unique up to a re-labelling of the
variables.

In a sense every joint distribution function implicitly
contains both a description of the marginal behaviour of
individual variables and a description of their dependency
structure. Copulae provide a way of isolating the description
of their dependency structure. A copula is a multivariate
distribution, C , with uniformly distributed marginals U (0, 1)
on [0, 1]. Sklar’s theorem (Sklar, 1959) states that every
multivariate distribution F with marginals F1(x1), . . . , Fn(xn)

can be written as

F(x1, . . . , xn) = C{F1(x1), . . . , Fn(xn)}, (2)

for some appropriate n-dimensional copula C . In fact, the
copula from (2) has the expression

C(u1, . . . , un) = F{F−1
1 (u1), . . . , F−1

n (un)},

where the F−1
i (ui )’s are the inverse distribution functions of the

marginals.
Passing to the joint density function f , for an absolutely

continuous F with strictly increasing, continuous marginal
densities F1, . . . , Fn using the chain rule we have

f (x1, . . . , xn) = c1···n{F1(x1), . . . , Fn(xn)}

· f1(x1) · · · fn(xn) (3)

for some (uniquely identified) n-variate copula density c1···n(·).
In the bivariate case (3) simplifies to

f (x1, x2) = c12{F1(x1), F2(x2)} · f1(x1) · f2(x2),

where c12(·, ·) is the appropriate pair-copula density for the pair
of transformed variables F1(x1) and F2(x2). For a conditional
density it easily follows that

f (x1|x2) = c12{F1(x1), F2(x2)} · f1(x1),

for the same pair-copula. For example, the second factor,
f (xn−1|xn), in the right-hand side of (1) can be decomposed
into the pair-copula c(n−1)n{Fn−1(xn−1), Fn(xn)} and a
marginal density fn−1(xn−1). For three random variables
X1, X2 and X3 we have that

f (x1|x2, x3) = c12|3{F(x1|x3), F(x2|x3)} · f (x1|x3), (4)

for the appropriate pair-copula c12|3, applied to the transformed
variables F(x1|x3) and F(x2|x3). An alternative decomposition
is

f (x1|x2, x3) = c13|2{F(x1|x2), F(x3|x2)} · f (x1|x2), (5)

where c13|2 is different from the pair-copula in (4). Decompos-
ing f (x1|x2) in (5) further, leads to

f (x1|x2, x3) = c13|2{F(x1|x2), F(x3|x2)}

· c12{F(x1), F(x2)} · f1(x1),

where two pair-copulae are present.
It is now clear that each term in (1) can be decomposed

into the appropriate pair-copula times a conditional marginal
density, using the general formula

f (x |v) = cxv j |v− j {F(x |v− j ), F(v j |v− j )} · f (x |v− j ),

for a d-dimensional vector v. Here v j is one arbitrarily chosen
component of v and v− j denotes the v-vector, excluding
this component. In conclusion, under appropriate regularity
conditions, a multivariate density can be expressed as a
product of pair-copulae, acting on several different conditional
probability distributions. It is also clear that the construction is
iterative by nature, and that given a specific factorisation, there
are still many different re-parametrisations.

The pair-copula construction involves marginal conditional
distributions of the form F(x |v). Joe (1996) showed that, for
every j ,

F(x |v) =
∂ Cx,v j |v− j {F(x |v− j ), F(v j |v− j )}

∂F(v j |v− j )
, (6)

where Ci j |k is a bivariate copula distribution function. For the
special case where v is univariate, we have

F(x |v) =
∂ Cxv{F(x), F(v)}

∂F(v)
.

In Sections 4–6 we will use the function h(x, v,Θ) to represent
this conditional distribution function when x and v are uniform,
i.e., f (x) = f (v) = 1, F(x) = x and F(v) = v. That is,

h(x, v,Θ) = F(x |v) =
∂ Cx,v(x, v,Θ)

∂v
, (7)

where the second parameter of h(·) always corresponds to the
conditioning variable and Θ denotes the set of parameters for
the copula of the joint distribution function of x and v. Further,
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