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a b s t r a c t

Gerber–Shiu analysis with the generalized penalty function proposed by Cheung et al. (in press-a) is
considered in the Sparre Andersen risk model with a Kn family distribution for the interclaim time. A
defective renewal equation and its solution for the present Gerber–Shiu function are derived, and their
forms are natural for analysis which jointly involves the time of ruin and the surplus immediately prior
to ruin. The results are then used to find explicit expressions for various defective joint and marginal
densities, including those involving the claim causing ruin and the last interclaim time before ruin. The
case with mixed Erlang claim amounts is considered in some detail.
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1. Introduction and preliminaries

Consider the insurer’s surplus process at time t defined as
{Ut; t ≥ 0} with Ut = u + ct −

∑Nt
i=1 Yi, and u ≥ 0 is the initial

surplus. The number of claims process {Nt; t ≥ 0} is assumed to
be a renewal process, with V1 the time of the first claim and Vi the
time between the (i−1)th and the ith claim for i = 2, 3, 4, . . . . It is
assumed that {Vi}∞i=1 is an independent and identically distributed
(iid) sequence of positive random variables with common prob-
ability density function (pdf) k(t) and distribution function (df)
K(t) = 1− K(t).
In the present paper, we consider the model of Li and Garrido

(2005), whereby k(t) is a pdf from the Kn class of densities, and has
Laplace transform k̃(s) =

∫
∞

0 e
−stk(t)dt given by

k̃(s) =
ζ (s)

m∏
i=1
(λi + s)ni

(1)

where λi > 0 for i = 1, 2, . . . ,mwith λi 6= λj for i 6= j. Also, ni is a
nonnegative integer for i = 1, 2, . . . ,m, and n = n1+· · ·+nm > 0,
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while ζ (s) is a polynomial of degree n−1 or less (the denominator
of (1) is a polynomial of degree n). In this paper we adopt the
notational convention that the empty product is 1, and the empty
sum is 0. The classical compound Poisson risk model (e.g. Gerber
and Shiu, 1998) is recovered in the exponential case with m =
n = 1, the Erlang(n) renewal risk model (Li and Garrido, 2004)
with m = 1, and nm = n, and the generalized Erlang renewal risk
model (Gerber and Shiu, 2005) with ni = 1 for i = 1, 2, . . . , n, and
ζ (s) =

∏m
i=1 λ

ni
i in these cases. As pointed out by Li and Garrido

(2005), a partial fraction expression of (1) results in

k̃(s) =
m∑
i=1

ni∑
j=1

ai,j
(λi + s)j

(2)

where

ai,j =
1

(ni − j)!
dni−j

dsni−j

{
m∏

k=1,k6=i

ζ (s)
(λk + s)nk

}∣∣∣∣∣
s=−λi

.

Inversion of (2) results in

k(t) =
m∑
i=1

ni∑
j=1

ai,j
t j−1e−λit

(j− 1)!
, (3)

and the Kn class may be viewed in terms of finite combinations of
Erlangs. Also, it is assumed that the claim sizes {Yi}∞i=1 with Yi the
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size of the ith claim are iid positive random variables with pdf p(y),
df P(y) = 1− P(y), and Laplace transform p̃(s) =

∫
∞

0 e
−syp(y)dy.

Premiums are paid continuously at rate c , and the positive security
loading condition E[Y1] < cE[V1] is assumed to hold.
Let T be the time to ruin defined by T = inf{t ≥ 0 : U(t) < 0}

with T = ∞ if Ut ≥ 0 for all t ≥ 0, and δ ≥ 0 may be viewed
as a discount factor. The classical Gerber–Shiu discounted penalty
function is defined (Gerber and Shiu, 1998) by

mδ,12 (u) = E
[
e−δTw12 (UT− , |UT |) I (T <∞) |U0 = u

]
,

u ≥ 0, (4)

where w12(x, y) is the so-called penalty function for x > 0, y > 0,
and I(.) is the indicator function. If ruin occurs, the surplus prior to
ruin is UT− and the deficit at ruin is |UT |.
In this paper, we study a generalized form of the Gerber–Shiu

discounted penalty function in (4) which includes a new quantity
in the penalty function introduced by Cheung et al. (in press-a), i.e.

mδ (u) = E
[
e−δTw

(
UT− , |UT |, RNT−1

)
I (T <∞) |U0 = u

]
,

u ≥ 0, (5)

where Rn = u +
∑n
i=1(cVi − Yi) for n = 1, 2, . . ., and R0 = u.

The discrete process {Rn; n = 0, 1, 2, . . .} thus represents the
surplus immediately after claims occur, i.e. Rn is the surplus after
the nth claim for n > 0, and R0 is defined to be the initial surplus.
Consequently, RNT−1 is the surplus immediately after the second
last claim before ruin occurs if NT > 1, and is equal to the initial
surplus u if ruin occurs on the first claim. Wemay study quantities
involving RNT−1 such as the last interclaim time before ruin VNT =
(UT− − RNT−1)/c , discussed by Cheung et al. (in press-a) in the
classical compound Poisson risk model.
There has been a variety of recent papers which include addi-

tional variables (beyond the traditional surplus prior to ruin UT−
and the deficit at ruin |UT |) in the penalty function. As mentioned,
Cheung et al. (in press-a) consider the penalty function (5) in the
classical compound Poisson risk model. Cheung et al. (in press-b)
discuss underlying mathematical structural properties of even
more general Gerber–Shiu functions where the penalty function
includes the minimum surplus level before ruin XT = inf0≤t<T Ut
as well, but in the more general dependent Sparre Andersen risk
process. The results of Cheung et al. (in press-b) thus apply to
the model considered in this paper as well, yielding a variety of
mathematical properties, but appear to be of less use for explicit
identification of some quantities of interest under the present Kn
interclaim time assumption. The same variable XT has also been in-
cluded in the penalty function in Gerber–Shiu analysis of Levy risk
processes in Biffis and Kyprianou (in press) and Biffis and Morales
(2009).
Obviously, withw(x, y, v) = 1 in (5),

Gδ (u) = E
[
e−δT I (T <∞) |U0 = u

]
, u ≥ 0, (6)

and for δ = 0 (6) is the ruin probabilityψ(u) = Pr(T<∞|U0 = u).
We remark that Gδ(u) = 1 − Gδ(u) is a compound geometric tail
and satisfies the defective renewal equation

Gδ(u) = φδ

∫ u

0
Gδ(u− y)fδ(y)dy+ φδ

∫
∞

u
fδ(y)dy, (7)

and Li and Garrido (2005) have identified φδ and the ladder height
pdf fδ(y).
As was the case in Li and Garrido (2005), the analysis of (5)

depends heavily on the Dickson-Hipp operator (e.g. Li and Garrido,
2004) defined for a function h(x) by Trh(x) = erx

∫
∞

x e
−ryh(y)dy. If

h̃(s) =
∫
∞

0 e
−syh(y)dy is the Laplace transform of h(x), the Laplace

transform of Trh(x) is given by∫
∞

0
e−sx{Trh(x)}dx = {̃h(r)− h̃(s)}/(s− r).

Also, Lundberg’s (generalized) fundamental equation

p̃(s)̃k(δ − cs) = 1 (8)

is of central importance in the ensuing analysis, and Li and Garrido
(2005) showed that (8) has exactly n roots ρ1, ρ2, . . . , ρn with
nonnegative real part Re(ρj) ≥ 0 in the complex plane. We shall
henceforth assume (as did Li and Garrido, 2005) that these roots
are distinct, i.e. ρi 6= ρj for i 6= j.
It follows from (1) and (2) that

ζ (δ − cs) =

{
m∏
k=1

(λk + δ − cs)nk
}

m∑
i=1

ni∑
j=1

ai,j
(λi + δ − cs)j

,

is still a polynomial in s of degree n − 1 or less. More generally, if
θi,j are constants, then as pointed out by Li and Garrido (2005),

q(s) =

{
m∏
k=1

(λk + δ − cs)nk
}

m∑
i=1

ni∑
j=1

θi,j

(λi + δ − cs)j
, (9)

is a polynomial in s of degree n − 1 or less. Therefore, from the
theory of Lagrange polynomials, (9) may be reexpressed as

q(s) =
n∑
i=1

q(ρi)

{
n∏

j=1,j6=i

s− ρj
ρi − ρj

}
. (10)

Next, we note that functions of the form

h(u) =
∫
∞

0
e−δt r(u+ ct)k(t)dt, (11)

where r(x) is a function and k(t) is given by (3), are of interest in
later sections. The Laplace transform of (11) is

h̃(s) =
∫
∞

0
e−su

∫
∞

0
e−δt r(u+ ct)k(t)dtdu

=

∫
∞

0
e−(δ−cs)t

{∫
∞

0
e−s(u+ct)r(u+ ct)du

}
k(t)dt

=

∫
∞

0
e−(δ−cs)t

{∫
∞

0
e−sxr(x)dx−

∫ ct

0
e−sxr(x)dx

}
k(t)dt.

Thus if the Laplace transform of r(x) is r̃(s) =
∫
∞

0 e
−sxr(x)dx, then

h̃(s) = r̃(s)̃k(δ − cs)−
∫
∞

0
e−sx

{∫
∞

x/c
e−(δ−cs)tk(t)dt

}
r(x)dx.

It is straightforward but tedious to show using (3) that the Laplace
transform of (11) may then be expressed as

h̃(s) = r̃(s)̃k(δ − cs)−
m∑
i=1

ni∑
j=1

θi,j

(λi + δ − cs)j
, (12)

where

θi,j =

ni∑
k=j

(−1)k−jai,k̃r (k−j)
(
λi+δ
c

)
(k− j)!ck−j

,

and r̃ (j)(s) =
∫
∞

0 (−x)
je−sxr(x)dx. Clearly, (12) is completely spec-

ified by k̃(s) and r̃(s). This Laplace transform relationship is used
in Section 2 to derive a defective renewal equation for (5), and to
show that this is a generalization of that obtained by Li and Gar-
rido (2005) for its special case (4). This generalization, in addition
to allowing for analysis involving RNT−1 and related quantities, is
in fact also more natural for use in joint analysis involving T and
UT− , as is also discussed.
In Section 3, the results of Section 2 are used to obtained

the trivariate ‘‘discounted’’ defective distribution of UT− , |UT |, and



Download English Version:

https://daneshyari.com/en/article/5077509

Download Persian Version:

https://daneshyari.com/article/5077509

Daneshyari.com

https://daneshyari.com/en/article/5077509
https://daneshyari.com/article/5077509
https://daneshyari.com

