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Abstract

Consider a discrete time risk process based on the compound binomial model. The insurer pays a dividend of 1 with a probability
q0 when the surplus is greater than or equal to a non-negative integer x . We will derive recursion formulas and an asymptotic
estimate for the ruin probability, the probability function of the surplus prior to the ruin time, and the severity of ruin, etc.
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1. Introduction

In the compound binomial model, the number of insurance claims is governed by a binomial process N (t),
t = 0, 1, 2, . . .. In any time period, the probability of a claim is p, 0 < p < 1, and the probability of no claim
is q = 1 − p. We denote by ξt = 1 the event where a claim occurs in the time period (t − 1, t] and denote by
ξt = 0 the event where no claim occurs in the time period (t − 1, t]. Then N (t) =

∑t
k=1 ξk for t ≥ 1 and N (0) = 0.

The occurrences of claims in different time periods are independent events. The claim amounts X1, X2, X3, . . . are
mutually independent, identically distributed, positive and integer-valued random variables; they are independent of
the binomial process {N (t)}. Let the initial surplus be u, which is a non-negative integer. Traditionally, assume that
the premium received in each time period is one. For t = 1, 2, . . ., the surplus at time t is

U (t) = u + t − [X1ξ1 + X2ξ2 + · · · + X tξt ], (1.1)

and U (0) = u. The compound binomial model has been studied by Gerber (1988); Shiu (1989); Willmot (1993);
Dickson (1994); DeVylder (1996) (Chapter 10), DeVylder and Marceau (1996) (Section 2), and Cheng et al. (2000);
Cheng and Zhu (2001).
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In this paper, we consider the compound binomial model modified by the inclusion of dividends. We assume that
the insurer will pay a dividend of 1 with a probability q0, 0 ≤ q0 < 1 in each time period if the surplus is greater than
or equal to a non-negative integer x at the beginning of the period. See Gerber et al. (1997) (Chapter 9) for a similar
model.

In Section 3 we will obtain the recursion formulas for the (expected discounted) penalty function associated with
the time of ruin when the discount factor v = 1. The recursion formulas can also be seen as renewal equations. In
Section 4 we will derive an asymptotic estimate for the penalty function. This will in Section 5 lead to asymptotic
estimates for the ruin probability, the severity of ruin, the probability function of the surplus prior to the ruin time, and
some other probability functions.

2. The model and preliminaries

In order to attract investment, an insurer usually devises some products with dividends as the following model.
We consider a discrete time risk process based on the compound binomial model (1.1). The surplus process is given

by

U (t) = u + t − Z t − St , (2.1)

for t = 0, 1, 2, . . .. In (2.1), the initial surplus u is a non-negative integer; St is defined as

St =

t∑
k=1

Xkξk (2.2)

for t ≥ 1 and S0 = 0; Z t is defined as

Z t =

t∑
k=1

ηk I (U (k − 1) ≥ x) (2.3)

for t ≥ 1 and Z0 = 0, where x is a fixed non-negative integer, I (A) is the indicator function of a set A, and ηk (k ≥ 1)
is a series of randomized decision functions that are mutually independent, identically distributed and independent of
{St }. In detail, we denote by ηk = 1 the event where a dividend of 1 is paid at the time k and denote by ηk = 0 the
event where no dividend is paid at the time k. Assume

Pr(ηk = 1) = q0; Pr(ηk = 0) = p0, (2.4)

where 0 ≤ q0 < 1 and q0 + p0 = 1. For t ≥ 1, it follows from above that

U (t) = U (t − 1)+ 1 − ηt I (U (t − 1) ≥ x)− X tξt . (2.5)

It is reasonable that the randomized decision functions ηk (k ≥ 1) are brought in to decide the periods with a
dividend. This can be interpreted as follows: the return on the investment by an insurer in each time period can be
regarded as being stochastic, and if the return on the investment in the present period is greater than a given level, then
the insurer will pay a benefit of 1 to the insured. But, in model (2.1), if the surplus is smaller than x at the beginning
of the present period, then a decision for paying a benefit of 1 will be cancelled. Certainly, the randomized decisions
can also be related to some other things that occur with probability q0 and do not occur with probability p0 in each
time period, for example natural disasters.

The model (2.1) is a sort of generalization of the classic risk model and is exactly the classic risk model if q0 = 0.
Hence our results in this paper include the corresponding results of the classic risk model.

The model with dividends in this paper is different to that of Gerber et al. (1997). In Gerber et al. (1997), a
continuous time risk model (the compound Poisson model) was considered. The insurer continuously pays dividends
when the surplus is no smaller than a given dividend bound, but the decision on paying a dividend is not stochastic as
soon as the surplus is above the dividend bound. However, the discrete time model with dividends in this paper can be
seen as analogous to the continuous time model in Gerber et al. (1997) in a way.

Put X = X1 and let

p(k) = Pr(X = k), k = 1, 2, 3, . . . (2.6)
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